
GitLab CI/CD
(Continuous Integration / Continuous Delivery)

Updated for 2021-11-10

[web] portal.biohpc.swmed.edu

[email] biohpc-help@utsouthwestern.edu

 Git crash course

 What is CI? What is CD?

 Basic testing principles

 Gitlab CI itself

 Runners

–How your CI gets run!

 Demonstration

Basic Overview

 This is not a comprehensive survey, but is meant to get you exposed to CI concepts and

familiar with the infrastructure BioHPC has available.

– You may want to explore the documentation a bit.

 Your science, your software, and your team might be better suited to some variation/subset of what’s

presented here.

– CI is meant to lessen the overall amount of work that you have to do to maintain your codebase.

– A smaller script-based project may need much less CI than a more complex, compiled

application.

– CI is a spectrum of different tools and approaches, and you can mix/match as you please.

 As always, we are available at biohpc-help@UTSouthwestern.edu if you need further assistance or pointing

in the right direction.

Disclaimer

mailto:biohpc-help@UTSouthwestern.edu

 https://git.biohpc.swmed.edu/biohpc/training-example-ci

 Contains several files (heavily commented) to illustrate different parts of the GitLab CI.

 Clone or fork the repository to a project of your own and play around!

Practical example

https://git.biohpc.swmed.edu/biohpc/training-example-ci

 The concepts of CI are very closely tied to concepts in version control, specifically Git.

–Repositories

–Commits

–Branches

–Tags

 Slides from previous training:

– https://portal.biohpc.swmed.edu/media/filer_public/21/ad/21adc5e7-f5e8-467c-830e-b40df31a3935/gitintro.pdf

– https://portal.biohpc.swmed.edu/content/training/training-slides/ - search for ‘Git'

Understanding of Git is necessary to use CI to its fullest capability

https://portal.biohpc.swmed.edu/content/training/training-slides/
https://portal.biohpc.swmed.edu/content/training/training-slides/

 Git is a version control system, designed to track changes to your codebase.

 A git repository is a collection of code, tracked by git.

 A git commit is a set of changes, applied to some previous repository state, that

updates the repository to some new state.

 A git push is an action that migrates those changes to some other repository (e.g.

Gitlab)

 A git branch is a series of related commits distinct from other branches.

 A git merge is a process of bringing changes from one branch to your current one.

 A git tag is a ‘special name’ given to a particular commit.

Quick overview of Git

…some code…
thisVar = 5;
thatVar =
oldFunction(thisVar);

…some code…
thisVar = 5;
thatVar =
newFunction(thisVar);

…some code…
thisVar = 7;
thatVar =
oldFunction(thisVar);

…some code…
thisVar = 7;
thatVar =
newFunction(thisVar);

Git can be thought of as a graph of ‘repository states’

7

Put another way…

Remote

Local

>
folder

git
commit

Remote

Local

>

folder

git push

Git commits and pushing to remote

9

Lastly…

A project in GitLab is a repository + all additional supporting ‘stuff’

Wiki
Issues/Bug Tracking
Container/Package Registries
CI/CD configuration

10

Both are ideal practices / philosophies

CI/CD tools are meant to help you attain these ideals through automation.

 Continuous Integration (CI) is the general practice of trying to frequently integrate code changes

into a central repository while making sure the codebase is ‘good’.

– Develop, test, merge.

– Only include changes when tests are passed.

– Testing the code

 Continuous Delivery (CD) is the practice of going from repository state to a static deliverable.

– Build, test, release.

– Only releasing when tests are passed.

– Testing the application

What is CI/CD?

Deliver?
Review

Revise

Release

 It automates tedious, time-consuming, or repetitive tasks and reduces human error

 It checks your work for you – CI pipelines provide a record of successes/failures, which is valuable

debug information and verifies functionality

 Frequently checking whether or not your code works lets you make consistent progress with your

code – fewer surprises, fewer headaches.

 If you have many people working on the same codebase, they can agree on the tests that will be

run, and then work independently while ensuring the code continues to work as they all expect.

Why CI?

A few examples use cases for CI/CD

13

• If you have a software package you want to publish…
• CI can automatically build and test your code on one branch before you merge

it to production.
• Whenever anything is merged to production, CD can then automatically

package and publish the resulting software package.

• If you have simulation code you want to benchmark…
• CI can run a battery of performance tests and provide you with detailed

information about run-time, memory usage, etc.

• If you have data analysis code you want to consistently prove…
• CI can run your code on a series of test datasets to show classification accuracy.

CI can do all this automatically, every time you push a change to your project
(you can also customize it to trigger off various conditions)

 Good overview of CI:

– https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

– https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration

 Overview of testing (broadly):

– https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

 GitLab-specific documentation:

– https://docs.gitlab.com/ee/ci/

More on CI/CD and testing (documentation)

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://docs.gitlab.com/ee/ci/

!

Developer Machine

>_

CI Test Runners

job_A job_B

A
PASS

B
WARN

GitLab CI

GitLab

1. User sets up
runner(s) on
suitable host(s)

2. User submits
commit containing
.gitlab-ci.yml

3. GitLab triggers CI
pipeline, schedules
jobs.

4. Jobs sent to
runners

5. Runners send
results back to
GitLab

!

1

2

3

4,5

The general CI process on GitLab

15

Enabling CI in your project and controlling who can run pipelines

16

CI must be enabled via a settings switch in your project.

 GitLab’s CI scheduling only triggers if there is a ‘.gitlab-ci.yml’ file in the root/base of your project.

– Exactly as written, including leading period ‘.’ – it is a hidden file.

– This file completely specifies how GitLab should run your CI pipeline.

 Pipelines are composed of jobs which are organized into stages.

– All jobs in a stage must pass (or be allowed to fail) before the next stage is run.

 Artifacts are files which can be passed between stages – a compiled library can be used by a later job.

– Artifacts can also be downloaded via the GitLab web interface.

GitLab-specific CI/CD structure

Partial .gitlab-ci.yml file

18

Each line in the ‘script’ will be executed as
though entered at a terminal.

Every line must exit with exit code 0 to succeed.

Full file at: https://git.biohpc.swmed.edu/biohpc/training-example-ci/-/blob/master/.gitlab-ci.yml

File format docs at: https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html

https://git.biohpc.swmed.edu/biohpc/training-example-ci/-/blob/master/.gitlab-ci.yml
https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html

 Automatically checks syntax as you write your CI script. Highly recommend using this tool.

– This will save you a huge amount of time – YAML is a fairly strict syntax.

 Whenever you commit changes here, it will trigger a pipeline like any commit would.

Every project with CI/CD enabled has access to a Pipeline Editor

Pipeline Editor lets you visualize relationships within pipelines

20

Connections show a ‘needs’ relationship – later job needs artifact from earlier job.

!

Developer Machine

>_

CI Test Runners

job_A job_B

A
PASS

B
WARN

GitLab CI

GitLab

1. User sets up

runner(s) on

suitable host(s)

2. User submits

commit containing

.gitlab-ci.yml

3. GitLab triggers CI

pipeline,

schedules jobs.

4. Jobs sent to

runners

5. Runners send

results back to

GitLab

!

1

2

3

4,5

The general CI process on GitLab

21

 When you push to a Gitlab project and CI is active…

– GitLab checks to see if the repo has a .gitlab-ci.yml file at the root of the repository.

– GitLab parses the CI file and uses the result to dispatch jobs to the runners.

 For each job, runners will execute each line of the script as though it was entered at a Bash prompt.

 The runner executes with a large number of CI variables in its environment

– Lots of information about the job itself, various tokens…

– You can add additional variables in your .gitlab-ci.yml

Each CI job runs on a runner. The machine the runner runs on should have all necessary

dependencies installed/available.

How runners run jobs

Registering new runners

 Please only run this on BioHPC workstations or thin clients – NOT on Nucleus nodes

– Acceptable to use via WebGUI or WebGPU jobs to test, but not for production use.

 module add gitlab-runner

 gitlab-runner register

– follow the prompts – kind of finicky about backspaces.

 gitlab-runner register --non-interactive …

On BioHPC…

 General documentation:

–https://docs.gitlab.com/runner/

 Advanced configuration:

–https://docs.gitlab.com/runner/configuration/advanced-configuration.html

 Letting runners authenticate to GitLab (e.g. for publishing code)

–https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html

 Debugging runners:

–https://docs.gitlab.com/runner/faq/#run-in---debug-mode

More on Runners (Documentation)

https://docs.gitlab.com/runner/
https://docs.gitlab.com/runner/configuration/advanced-configuration.html
https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html
https://docs.gitlab.com/runner/faq/#run-in---debug-mode

The Pipelines tab

26

Quickly see which
stages failed

Download
artifacts from
various jobs

The Jobs tab – more fine-grained detail

27

Each Job has a report page – first place to go when debugging CI

28

 .gitlab-ci.yml syntax:

– https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html

 CI variables (lots!)

– https://docs.gitlab.com/ee/ci/variables/

 Pipeline editor

– https://docs.gitlab.com/ee/ci/pipeline_editor

 Script syntax:

– https://docs.gitlab.com/ee/ci/yaml/script.html

 Various examples:

– https://docs.gitlab.com/ee/ci/examples/

More on GitLab CI

https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html
https://docs.gitlab.com/ee/ci/variables/
https://docs.gitlab.com/ee/ci/pipeline_editor
https://docs.gitlab.com/ee/ci/yaml/script.html
https://docs.gitlab.com/ee/ci/examples/

 Testing is the cornerstone of any effective codebase

– Easier to debug when something breaks (“These features are affected”)

– “Proof” of functionality

 Write tests that give you a lot of information without taking up too much computational resource or

time.

 If you find yourself doing the same things over and over, consider using some form of CI/CD to

automate the process.

Testing and CI

 Slides will be available at:

–https://portal.biohpc.swmed.edu/content/training/training-slides/

 Example CI repository available at:

–https://git.biohpc.swmed.edu/biohpc/biohpc-training/example_ci_for_training

Contact us at biohpc-help@UTSouthwestern.edu if you need more assistance

Thank you for your attention!

https://portal.biohpc.swmed.edu/content/training/training-slides/
https://git.biohpc.swmed.edu/biohpc/biohpc-training/example_ci_for_training
mailto:biohpc-help@UTSouthwestern.edu

