
Software Installation on BioHPC

1

[web] portal.biohpc.swmed.edu
[email] biohpc-help@utsouthwestern.edu

Updated for 2020-07-15

Software installation - Windows

Topics covered Pre-requisites

To make the most of this tutorial, you
should already know how to:

Login with SSH to a linux machine
Navigate directories in linux terminal
Edit a text file in terminal (e.g. nano, vi etc)

Basic principles of (Linux) software
The $PATH variable
Scripted vs compiled programs

Python software
pip
virtual environments
Anaconda

R package installation
Troubleshooting

Generic software
Installation from source code

Basic principles of (Linux) software

The $PATH variable

In Linux (and other OS also) the $PATH is a global variable that contains a list of locations:

The CLI will consider these locations when interpreting a command name as a program.

Basic principles of (Linux) software

Modifying the $PATH variable

Let assume there is a program called hello located in a personal folder:

However, this program only
works while in that folder or
with an absolute path:

Adding the program location to the $PATH variable, makes the command
work everywhere:

Basic principles of (Linux) software

Permanently setting the $PATH variable

The command ‘export $PATH’ will be useful only for the current session and only for the
current Nucleus node. If you logout, or log-in somewhere else, the $PATH will not contain the
changes we made.

In order to make the $PATH change permanent, we need to edit the file ~/.bash_profile

However, this program only
works while in that folder or
with an absolute path:

Be careful! Only alter your $PATH once you are certain you need to.
If the same program exists in multiple locations of $PATH, then the first one takes precedence.

Other PATH like variables

 LD_LIBRARY_PATH

o is the search path environment variable for the linux shared library

 PYTHONPATH
o is an environment variable which you can set to add additional directories

where python will look for modules and packages.
o For most installations, you should not set these variables since they are not

needed for Python to run. Python knows where to find its standard library.
o The only reason to set PYTHONPATH is to maintain directories of custom

Python libraries that you do not want to install in the global default location

 LIBPATH

o is for the compiler, helps it find metadata files. Like type libraries, .NET

assemblies, WinRT .winmd files.

Scripted programs Compiled programs

- The program is a script (a text file of
commands in order)

- The script is executed by an
interpreter (e.g. python), which runs
the program line by line as scripted

- You only need the script file and the
interpreter to run your program

BioHPC has many interpreters already
available.

- The script/code does not run directly
as it is but needs to be compiled and
built using an appropriate tool

- This will result in a program being
created from the original source

- Compiling a source code requires a
specific compiler:

- To match the language of the
source

- To match the architecture of the
target environment

- Slow execution
- Easy to debug errors

- Fast execution
- Hard to debug errors

Scripted vs Compiled programs

Python Software

Python is a script interpreter. Python programs are scripted programs.

Generally, complex programs will have more than a single script file. The term package or
module is often used in python. A package or module is a collection of script files necessary
to make up a complex program.

Installing a python package, means obtaining the package and placing it in a specific location
already known to the python interpreter.

Similar to the linux $PATH variable, python has its own path called sys.path where it will
look for packages.

>>> import sys
>>> print '\n'.join(sys.path)
/usr/lib64/python27.zip
/usr/lib64/python2.7
/usr/lib64/python2.7/plat-linux2
/usr/lib64/python2.7/lib-tk
/usr/lib64/python2.7/lib-old
/usr/lib64/python2.7/lib-dynload
/home2/s201048/.local/lib/python2.7/site-packages

Pip

In python we never change the sys.path manually. Instead, we use package
manager to receive the source package and place it in the appropriate.

PIP is the foremost python package manager. Almost all published python packages
can be fetched with the command
pip install <package-name>

Can you think of any issues that may arise while installing packages this way?

- Where is the package installed?
- What if you need several versions of the same package?

e.g. packageX==2.0 works with python2 and packageX==2.1 works with python3
• What happens in the long run if you ‘install and forget’?
• It can affect your system-wide experience!

Don’t panic! There are plenty of solutions to this conundrum.

Python Software

Virtual environments

Python Virtual Environments (venv) are a way to encapsulate a certain python version +
a collection of certain packages. This allows you to create environments for each project
(or group of related projects) in order to ensure you will always have the necessary
packages and python version for that project.

Python Software

Virtual environments

Python Software

Install virtualenv package

Create a virtual environment

Activate environment / Use / Deactivate

So far:

Python Software

pip: the package manager
virtualenv: the environment manager, installable via pip

This approach is long proved to work and hardened by experience.
Often it is enough to encapsulate projects of any size.

However; there are downfalls:
- Cross dependency management is still hard for larger (many packages) projects

For these scenarios, solutions exist!

Anaconda

Python Software

Anaconda is a Platform; it contains many
utilities and features.
The purpose of anaconda, is to encapsulate
entire systems of applications.
Anaconda works in python, but also
supports other languages.

In fact, Anaconda is similar to having a
special virtualenv which contains also
python itself.

Anaconda also uses environments, to the
same logic as virtualenv.
Anaconda environments are superior to
virtualenv because of better dependency
management and multiple language
support.

curl -LO https://repo.anaconda.com/miniconda/Miniconda3-latest-
Linux-x86_64.sh

bash Miniconda3-latest-Linux-x86_64.sh

Conda, Miniconda, Anaconda:

Python Software

conda create env-name
conda activate env-name
conda install(instead of pip install)

Use conda environments similar to virtual
environments:

Nice intro here:
https://astrobiomike.github.io/unix/conda-intro

R package installation

• Install packages using RStudio GUI or install.packages("cowsay")

• Where are your R packages installed?

> .libPaths()

[1] "/home2/<username>/R/x86_64-pc-linux-gnu-library/3.6" #your own R packages

[2] "/cm/shared/apps/R/gcc/3.6.1/lib64" #system packages

[3] "/cm/shared/apps/R/gcc/3.6.1/lib64/R/library" #system packages

• Rstudio server or Rstudio OnDemand has error when installing a package:

• Use corresponding R version from the terminal to install the package and use it in

Rstudio server (3.3.2) or Rstudio OnDemnd, such as 3.6.1, they share the same

library.

Error installing R package?

Missing dependency for R package

 Check the modules, often the dependency is installed as a module, using:

module avail <package name>

 If not found, send BioHPC a ticket. We may need to install that package

for you:

yum install <package name>

libgfortran.so.4: cannot open shared object file:

No such file or directory

Installation from source code:

Generic software

• You need to obtain the source code of the application
• Generally, through a git url
• Sometimes as a compressed archive (in this case, you need to un-compress it)

• Expect high quality software to have its own documentation regarding installation.
• Often the code contains a Makefile

• specifies the steps and architecture, you only need to ‘make’ the makefile

Your take home message for BioHPC systems:
Generally, you will get a permission error. This doesn’t mean that you don’t have
permission to install software, just that the generic installation steps might try to
write to a path that you don’t own.
Explore the documentation for custom installations, in order to place the install in a
folder where you have access to (eg/project)

Generally, the keywords for this are prefix or install-dir.

Steps to install a generic software

19

• Ref to https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

#Basic example

./configure

make

Make install

#More realistic example

./configure --prefix=/home2/s173217/.local

make –j <n number>

Make install

Installation from source code:

Generic software

https://github.com/cowsay-org/cowsay

[s201048@Nucleus006 software]$ git clone https://github.com/cowsay-org/cowsay.git
Cloning into 'cowsay'...
[s201048@Nucleus006 software]$ cd cowsay/
[s201048@Nucleus006 cowsay]$ make install
prefix=/work/biohpcadmin/s201048/software/my-cowsay-installation

[s201048@Nucleus006 cowsay]$ cd ../my-cowsay-installation/

[s201048@Nucleus006 my-cowsay-installation]$./bin/cowsay hello

Add to $PATH if necessary

Demo

mkdir /path/to/my/new/virtual/env
cd /path/to/my/new/virtual/env
python -m venv venv
source venv/bin/activate
pip install tensorflow-gpu==1.14.0
Pip install keras==2.2.4

conda create -n student -y
conda activate student
conda install -c anaconda tensorflow-gpu=1.14.0 -y
conda install -c anaconda keras==2.2.4 -y

srun -p GPUA100 --pty /bin/bash
module load python/3.7.x-anaconda
module load cuda112/toolkit/11.2.0
module add cudnn/8.1.1.33

Virtual environment Anaconda environment

Setup the node and modules

python
>>> import tensorflow as tf
>>> print(tf.__version__)
1.14.0
>>> import keras
Using TensorFlow backend.

Evaluate the environment

Proxy setup on compute nodes

Can not connect type of errors:

• cat $USER/.condarc
• proxy_servers:

http: http://proxy.swmed.edu:3128
https: http://proxy.swmed.edu:3128

Anaconda

• Sys.setenv(https_proxy =
'http://proxy.swmed.edu:3128')R

• cat ~/.bashrc
• export http_proxy=http://proxy.swmed.edu:3128

export https_proxy=http://proxy.swmed.edu:3128

Linux
terminal

Thank you

Regarding BioHPC policy:

You are responsible for the software you install
• consider quality and trustworthiness of the software you chose
• You may only install to your accessible locations

Cluster-wide installation is still possible with request to BioHPC Helpdesk
(biohpc-help@utsouthwestern.edu)

Questions / Comments / Remarks ?

