UT Southwestern Medical Center

Lyda Hill Department of Bioinformatics

Introduction to Deep Learning BioHPC – 10/27/2021

Machine Learning on Images

Given examples, can we train a computer to do:

Artificial Neural Networks

Artificial Neural Networks

- Signal goes in, via input layer
- Weighted links transfer input values to neurons in hidden layers
- Signals are summed at hidden neurons and passed through transfer/activation function
- Processed signal arrives at output layer
- Decisions made using output signal(s)

https://www.3blue1brown.com/lessons/neural-networks

What we expect from Deep Learning?

More layers can encapsulate more knowledge.

More weights to train – need more data, need more computation

Where's the Knowledge?

How the Neural Network learns?

- Weights encapsulate the knowledge of a network
- Network learns using an algorithm that optimize weights given training data.
- Minimize cost function

Minimizing the cost function

https://www.3blue1brown.com/lessons/neural-networks

https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Convolutional Neural Networks

Complex architectures, many layers – really good for image recognition tasks

Lots of computing power needed to do the training mathematics!

GPUs to the Rescue!

GPU cards are exceptionally well suited to Neural Network Mathematics

Orders of magnitude faster than CPU-based training

https://keras.io

- High-level, open-source Python API
- "Being able to go from idea to result with the least possible delay is key to doing good research"
- Interface for TensorFlow, Microsoft Cognitive Toolkit, and Theano

Installing a Conda Environment for Keras and TensorFlow with Jupyter Support

\$ module load python/3.6.4-anaconda

\$ conda create --name py3.6-keras python=3.6 ipykernel keras tensorflow-gpu pillow matplotlib

\$ ipython kernel install --user --name py3.6-tfgpu --displayname="Keras (GPU)"

Bioł	HPC
------	-----

Comment on this page Logged in as: s178337

Status -	Training -	Guides -	FAQs	Cloud Services -	BioHPC OnDemand -	Links -	Software -	Careers
Demand - Jupyter Notebook			OnDemand DIGITS					
			OnDemand Jupyter)				
	The lupiter project provides web based petebooks for i			OnDemand BisQue	longuagoo			
	including I	including Python, R, and Julia. Cre		ate beautiful notebook	OnDemand RStudio	ts, tables, and	d	

<u>https://colab.research.google.com/github/AviatorMoser/keras-mnist-</u> <u>tutorial/blob/master/MNIST%20in%20Keras.ipynb#scrollTo=ytmCnRlq7CDR</u>

Errata: The code in the "Inspecting the output" section needs to be changed to:

```
# The predict_classes function outputs the highest probability class
# according to the trained classifier for each input example.
predicted_classes = model.predict(X_test)predicted_classes = np.argmax(predicted_classes,axis=1)
```

```
# Check which items we got right / wrong
correct_indices = np.nonzero(predicted_classes == y_test)[0]
incorrect_indices = np.nonzero(predicted_classes != y_test)[0]
```


Please contact <u>BioHPC-help@UTSouthwestern.edu</u> for any questions.

Thank you!

