
Data handling in R

Amit Amritkar,
Computer Scientist

Variable Types & Data Structures

 Import, Dealing with Missing Data

 Transformation, Subsetting, Merging & Reshaping

Data Cleaning

Data Export

Working with Data - Data Wrangling

Using Rstudio on BioHPC resources

https://portal.biohpc.swmed.edu/content/ (Use VPN)
Cloud Services RStudio
BioHPC OnDemand OnDemand RStudio

 character: "treatment", "123", 'A', "A"

 numeric: 23.44, 120, NaN, Inf

 integer: 4L, 1123L

 logical: TRUE, FALSE, NA

 factor: factor("Hello"), factor(8)

(see next slide)

Variables in R Summary

 categorical variables for when we would prefer numeric values with associated labels, they

don’t have to be labeled.

 most important uses of factors: statistical modeling; since categorical variables enter into

statistical models differently than continuous variables, storing data as factors insures that

the modeling functions will treat such data correctly.

 Example:

> a <- factor (c("a", "b", "c", "b", "c", "b", "a", "c", "c")) # create the factor

> a # Print the new variable

[1] a b c b c b a c c # You can tell those are not stored as character: no quotes

Levels: a b c # Also the levels print out

> levels(a) # You can get the set of levels separately

Factors (very important!)

 as.character(2016)

 [1] "2016"

 as.numeric(TRUE)

 [1] 1

 as.integer(99)

 [1] 99

 as.factor("something")

 [1] something Levels: something

 as.logical(0)

 [1] FALSE

Type conversion

 package lubridate

How to deal with dates & times

Load the lubridate package

>

create a character type object ("17 Sep 2015") and

name it dob

>

Coerce dob to a date and store as object mydate

>

Practice

Arithmetic Operators

Relational Operators

Logical Operators

Assignment Operators

Miscellaneous Operators

Operators

 +,-,*,/,^,%%

 >,<,==,!=

 &,|,!

 <− or = or ->

 :, %in%

> v <- c(2,5.5,6); t <- c(8, 3, 4)

> v^t

> v%%t

> v1 <- c(3,1,TRUE,2+3i);

c(3,1,TRUE,2+3i) -> v2;

v3 = c(3,1,TRUE,2+3i)

> v|t; v||t

> v <- 2:8

Practice

R Data Structures Summary

Homogeneous Heterogeneous

1d Atomic vector List

2d Matrix Data Frame
Tibble

nd Array

 Vectors
> a <- c(1,2,5.3,6,-2,4) # numeric vector

> a

> b <- c("one","two","three") # character vector

> b

> c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) #logical vector

> (c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)) #logical vector

 Matrices (All columns in a matrix must have the same mode(numeric, character,
etc.) and the same length)

> y <- matrix(1:20, nrow=5, ncol=4) # generates 5 x 4 numeric matrix

> cells <- c(1,26,24,68)

> rnames <- c("R1", "R2")

> cnames <- c("C1", "C2")

> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,

dimnames=list(rnames, cnames))

R Data Structures

Create a vector of red, green and yellow

 >

Create the magic matrix ->

 >

Create a 3*3 identity matrix

 >

Practice

 Arrays are similar to matrices but can have more than two dimensions

> a <- array(c(“green”,”yellow”),dim = c(3,3,2))

 Data Frames are more general than a matrix, in that different columns
can have different modes (numeric, character, factor, etc.)

Are the most commonly used data structure in R

> d <- c(1,2,3,4)

> e <- c("red", "white", "red", NA)

> f <- c(TRUE,TRUE,TRUE,FALSE)

> mydata <- data.frame(d,e,f)

> mydata

> names(mydata) <- c("ID","Color","Passed") # variable names

R Data Structures cont.

Create a 3*3*3 array full of ones

>

Create a data frame with 10 rows and 3 columns, first column with all 1, second column

with numbers 1 to 10 and third column with a letter randomly selected from A,B,C (hint:

use code below for third column)

> L3 <- LETTERS[1:3]; fac <- sample(L3, 10, replace = TRUE)

>

Practice

 are data frames, but they tweak some older behaviors to make life a little easier

– more elegant printing of data

 it never changes the type of the inputs (e.g. it never converts strings to factors!),
it never changes the names of variables, and it never creates row names.

 can have column names that are not valid R variable names, aka non-syntactic
names. (A syntactically valid name in R consists of letters, numbers and

the dot or underline characters and starts with a letter or the dot not followed by a number. Names
such as ".2way" are not valid, and neither are the reserved words, like “for”)

Tibbles

we will simply create some data using sampling functions

> x <- sample(c('Heads', 'Tails', 'Edge', 'Blows Up'), 5,

replace=T, prob=c(.45, .45, .05, .05))

> x2 <- rbinom(5, 1, .5)

> x3 <- rnorm(50, mean=50, sd=10)

> set.seed(Sys.time())

Creating Data - sampling functions

> library(tidyverse)

> as_tibble(iris)

> tibble(

x = 1:5,

y = 1,

z = x ^ 2 + y

)

Creating Data - Tibbles

 How can you tell if an object is a tibble?

 Compare and contrast the following operations on a data.frame
and equivalent tibble. What is different?

> df <- data.frame(abc = 1, xyz = "a")

> df$xyz

> df[, "xyz"]

> df[, c("abc", "xyz")]

Exercise

R can read data from files

 Very important concept: Working Directory (this is where R

will read data from by default)

> getwd() # get current working directory

> setwd("<new path>") # set working directory

Note that the forward slash should be used as the path

separator even on Windows platform > setwd(“C:/MyDoc")

Importing Data

Table File

 A data table can reside in a text file. The cells inside the table are

separated by blank characters. Here is an example of a table with 5 rows

and 3 columns. The example files are all to be found in the biohpc_r zip

file. Please download it here: https://tinyurl.com/biohpc-r-data

 > mydata <- read.table(“mydata.txt”) # read text

file

File Import - Data Tables

CSV File

 Each cell inside is separated by a special character, which usually is a comma, although

other characters can be used as well. The first row of the data file should contain the

column names instead of the actual data.

> mydata = read.csv("mydata.csv") # read csv file

 more import functions - http://www.r-tutor.com/r-introduction/data-frame/data-import

File Import - csv

The behavior of the different import functions varies slightly.

> data<-

read.csv(“household_power_consumption.txt",

sep=";", header = FALSE, stringsAsFactors=FALSE,

na.strings = "?", skip=66637 , nrows=2880)

> colnames(data) <-

names(read.csv("household_power_consumption.txt"

, sep=";", nrows=1))

Import - CSV Example

#set the column names

 Quite frequently, the sample data is in Excel format, and needs to be imported
into R prior to use. For this, we can use the functions from the readxl package. It
reads from an Excel spreadsheet and returns a data frame.

> library(readxl) # load readxl package

> mydata <- read_xls(“mydata.xls") # read from first sheet

> mydata <- read_excel(“mydata.xlsx”)

 Recommendation when issues occur: Store Excel file as tab separated file and
use RStudio “Import” function.

File Import - Excel file

Using RStudio for import

Get to know your data ...

> ?mtcars

> head(mtcars)

> str(mtcars)

> names(mtcars)

> summary(mtcars)

Working with Data - Helpful commands

Shows that the data is a data frame: A rectangular structure
Each column has same type, but different
columns may have different types

General info about data set

First couple of lines

summary statistics

List the column names

 In R, missing values are represented by the symbol NA (not available). Impossible values
(e.g., dividing by zero) are represented by the symbol NaN (not a number). Unlike SAS, R
uses the same symbol for character and numeric data.

 Testing for missing values (NA == NA # Is NA!)

> is.na(x) # returns TRUE of x is missing

> y <- c(1,2,3,NA)

> is.na(y) # returns a vector (F F F T)

 Recoding Values to Missing (if your data uses a different code for missing values)

recode 99 to missing for variable Col1

select rows where Col1 is 100 and recode column Col1

> mydata$Col1[mydata$Col1==100] <- NA

Dealing with Missing Values

 Counting missing values

> x <- c(1, 2, NA, 4)

> sum(is.na(x)) # sums up the missing values

in a column

> 1

 Which one is NA?

> which(is.na(x))

> 3

Dealing with Missing Values

 Excluding Missing Values from Analyses is often necessary since the default is to propagate
missing values. Many functions have na.rm argument to remove them

> x <- c(1,2,NA,3)

> mean(x) # returns NA

> mean(x, na.rm=TRUE) # returns 2

 The function complete.cases() returns a logical vector indicating which cases are complete.

list rows of data that have missing values

> mydata[!complete.cases(mydata),]

 The function na.omit() returns the object with listwise deletion of missing values.

create new dataset without missing data

> newdata <- na.omit(mydata)

Dealing with Missing Values

 Most modeling functions in R offer options for dealing with missing values. You

can go beyond pairwise and listwise deletion of missing values through

methods such as multiple imputation. Good implementations that can be

accessed through R include:

Amelia II (http://gking.harvard.edu/amelia/)

Mice

(https://www.rdocumentation.org/packages/mice/versions/2.25/topics/mice

)

mitools (http://cran.us.r-project.org/web/packages/mitools/index.html)

Advanced Handling of Missing Data

Explore the

household_power_consumption.txt dataset

using the commands listed on the

previous slide

Practice

