UT Southwestern Medical Center

BioHPC

Lyda Hill Department of Bioinformatics

Jupyter Notebook

[web] portal.biohpc.swmed.edu [email] biohpc-help@utsouthwestern.edu

2022-03-09

Outline

- Overview
- Getting started on BioHPC
 - o Demo
- Basic functionality
 - o Markdown cells
 - \circ Code cells
 - o Extras
- Create your own Jupyter Notebook environment
 - 10 recipes of kernels
- Suggestion
- Reference

Jupyter Notebook Example

C JUDYTET Untitled Last Checkpoint: Last Thursday at 4 21 PM (autosaved)	ę	Logout	
File Edit View Insert Cell Kernel Widgets Help	Trusted 🖋	Python 3 O	
P + SK 42 K ↑ ↓ NRun ■ C >> Code			
The Experiment Ultrices eros in cursus turpis massa tincidunt dui ut. Sed libero enim sed faucibus. Arcu dictum varius duis at consectetur. Ultric faucibus nisi tincidunt eget nullam. In eu mi bibendum neque egestas. Ultrices dui sapien eget mi proin sed libero enim. Pellenter cras. Mattis moleste a iaculis at erat pellentesque adpiscing commodo. Nulla facilis cras formentum odio. Malesuada bibendum vitae nunc. Eget egestas purus viverra accumsan in nisi. Faucibus purus in massa tempor nec feugiat. Turpis nunc eget lorrem o turpis egestas maecenas pharetra convallis. Sed augue lacus viverra vitae congue eu consequat. Laoreet non curabitur gravida	ies mi eget mauris pharetra. sque elit ullamcorper dignissi squrcu vitae elementum curat dolor sed. Malesuada fames a arcu.	d m itur ic	
<pre>In [15]: import pandas as pd experiment = pd.read_csv('experiment_data.csv') experiment.head() Out[15]:</pre>			Load and reference data
1 -6.15625 0 206624 2 -6.029319 0.446896 3 -5.902366 0.819841 4 -5.775453 0.859706			
$\langle \rangle$ Fermentum dui faucibus in ornare quam viverra orci sagittis. Interdum veilt euismod in pellentesque massa placerat. Dignissim si justo eget magna. Purus gravida quis blandit turpis cursus. Ornare massa eget egestas purus viverra. Consequat ac matist vulquidate enim nulta alique. Elementum facilisis too vell'ingilia est ultamorper eget nulta facilisis. Sodales ut etam sit am aliquam purus. Nulla portitor massa id neque aliquam vestibulum morbi. Consecteur adipiscing elit pellentesque habitant morbi $E[y] = k(x, x)^T C_N^{-1} y$ In [18]: import gkernel as gk	sodales ut eu sem integer vita felis. Interdum varius sit ame et nisi purus. Adipiscing eit ut i tristique senectus et netus.	ie t	Formatted text along with equations
sigma = 1.0			
<pre>x_train = experiment['x'].to_numpy() y_train = experiment['y'].to_numpy() x_r = np.linspace(x_train[0], x_train[-1], 100) model = gk.WyModel(beta=beta, sigma=sigma) model.train(x_train, y_train) y_pred, y_std = model.predict(x_r)</pre>			Executable code snippets

MS Word Document	Jupyter Notebook
 Single binary file (.docx, .doc) 	 Single main file, text formatted (.ipynb) and additional optional assets
 MS Word application to open and edit 	 Browser displays text file via a web server (needs python runtime env)
WYSIWYG editor	 Simple markup (md) text
 Editable (text), uninterpreted, static content (generally) 	 Editable, interactive, executable content for in-place (re-)creation.

Why Jupyter Notebook

- Interactive session that can include
 - Formatted text
 - Executable code snippets
 - Equations (LaTeX syntax)
 - Updatable graphs and images
- Can improve reproducibility and portability of documents and results
- Example use cases
 - Documented workflows and pipelines: paper, open-source code
 - Course material

Getting Started – Jupyter Notebook on BioHPC

• Portal <u>https://portal.biohpc.swmed.edu/terminal/ondemand_jupyter/</u>

• Demo

OnDemand Jupyter Notebook on BioHPC

Run Jupyter Notebook in two ways:

- BioHPC
- ✓ Local computer

Getting Started - BioHPC

• Login to Notebook

• Location: /home2/username/jupyter_notebooks/

	Cjupyter Untitled (unsaved changes)	out						
	File Edit View Insert Cell Kernel Widgets Help	<u>\$</u> \$						
	E + ≫ 2 E ↑ ↓ H ■ C Code							
	Introduction	٦						
Cell 1	Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam hendrerit nisi sed sollicitudin pellentesque. Nunc posuere purus rhoncus pulvinar aliquam. Ut aliquet tristique nisl vitae volutpat. Nulla aliquet porttitor venenatis. Donec a dui et dui fringilla consectetur id nec massa. Aliquam erat							
(markdown)	volutpat. Sed ut dui ut lacus dictum fermentum vel tincidunt neque. Sed sed lacinia lectus. Duis sit amet sodales felis. Duis nunc eros, mattis at dui ac, convallis semper risus. In adipiscing ultrices tellus, in suscipit massa vehicula eu.							
	$\nabla^2 \phi(\mathbf{r}) = f$							
Cell 2	<pre>In [*]: x = [i for i in range(10)]</pre>							
(code)								

Equations Subsection

But wait, there's more! Jupyter notebook supports an extended markdown. You can insert basic insert equation blocks directly in your document:

```
$$
```

```
\nabla^2 \phi(\mathbf{r}) = f
$$
```

You can also inline your equation. For example $x \in \mathbb{C}^{N}$ can be inlined.

Equations Subsection

But wait, there's more! Jupyter notebook supports an extended markdown. You can insert basic insert equation blocks directly in your document:

$$\nabla^2 \phi(\mathbf{r}) = f$$

You can also inline your equation. For example $x \in \mathbb{C}^N$ can be inlined.

Code Cell

```
In [10]: from functools import reduce
import operator
def factorial(n):
    return reduce(operator.mul, range(1, n+1))
factorial(4)
```

Out[10]: 24

Code

Interactive session implications

In [20]:
$$x = 5$$

 $y = 10$
In [24]: $x + y$
Out [24]: $0 \leftarrow ????$
In [23]: $x = -10$

Out of place execution order

Dataframe default table rendering

In [75]: import pandas as pd

rstate = np.random.RandomState(123)
df = pd.DataFrame(rstate.randn(100, 6))
df.head()

Out[75]:

	0	1	2	3	4	5
0	-1.085631	0.997345	0.282978	-1.506295	-0.578600	1.651437
1	-2.426679	-0.428913	1.265936	-0.866740	-0.678886	-0.094709
2	1.491390	-0.638902	-0.443982	-0.434351	2.205930	2.186786
3	1.004054	0.386186	0.737369	1.490732	-0.935834	1.175829
4	-1.253881	-0.637752	0.907105	-1.428681	-0.140069	-0.861755

Cell Command	Evaluation Result
object?	List documentation for 'object'
%lsmagic	List available extra functionality built into the kernel
%quickref	Quick reference on the kernel


```
In [8]: np.linspace?
```

```
Signature: np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
Docstring:
Return evenly spaced numbers over a specified interval.
Returns `num` evenly spaced samples, calculated over the
interval [`start`, `stop`].
The endpoint of the interval can optionally be excluded.
Parameters
-------
start : scalar
The starting value of the sequence.
stop : scalar
```


In [38]: %lsmagic

Out[38]: Available line magics:

Built-in to Kernel. Not platform dependent %alias %alias_magic %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %his tory %killbgscripts %ldir %less %lf %lk %ll %load %load_e xt %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pi nfo %pinfo2 %popd %pprint %precision %profile %prun %psear ch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_sele ctive %rm %rmdir %run %save %sc %set_env %store %sx %sys tem %tb %time %timeit %unalias %unload_ext %who %who_ls % whos %xdel %xmode

Available cell magics:

%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %
%javascript %%js %%latex %%perl %%prun %%pypy %%python %%p
ython2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system
%%time %%timeit %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

Code - Magics

```
In [9]: %matplotlib?
```

```
Docstring:
```

::

```
%matplotlib [-1] [gui]
```

```
Set up matplotlib to work interactively.
```

This function lets you activate matplotlib interactive support at any point during an IPython session. It does not import anything into the interactive namespace.

If you are using the inline matplotlib backend in the IPython Notebook you can set which figure formats are enabled using the following::

In [1]: from IPython.display import set_matplotlib_formats

Code - Magics

In [41]: %matplotlib inline

- In [63]: x = np.linspace(-1.0, 1.0, 100)
 y = x**2
 fig, ax = plt.subplots()
 ax.grid(True)
 ax.plot(x, y)
- Out[63]: [<matplotlib.lines.Line2D at 0x7fffbc30ffd0>]

💭 jupyter	Logout	
Files Running Clusters		
Select items to perform actions on them.	Upload New - 2	
Notebook list empty.	Python 3 Ke	ernels
	Other: Text File Folder Terminal	

Run Jupyter Notebook in two ways:

- ✓ BioHPC
- Local computer
- Note: can modify environment directly from login node

Recipe 1 – Create a new isolated python3 kernel using Conda on BioHPC

\$ ssh yourusername@nucleus.biohpc.swmed.edu

\$ module load python/3.7.x-anaconda

\$ conda create --name foo python=3

\$ conda activate foo

(foo) \$ pip install ipykernel

(foo) \$ pip install <additional modules as needed>

(foo) \$ python -m ipykernel install --user --name foo --display-name "my foo env"

(foo) \$ conda deactivate

Look under /home2/<yourusername>/.conda/envs

- 1) create conda env
- 2) install packages
- 3) create jupyter kernel
- 4) exit conda env

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics

Recipe 2 – Create a new isolated R kernel using Conda on BioHPC

\$ ssh yourusername@nucleus.biohpc.swmed.edu

\$ module load python/3.7.x-anaconda

\$ conda create --name my_renv r r-essentials r-base

\$ conda activate my_renv

(my_renv) \$ R

> IRkernel::installspec(name="my_renv", displayname="my R demo")

> q()

(my_renv) \$ conda deactivate

Look under /home2/<yourusername>/.conda/envs

Displayname shows in jupyter notebook

- 1) create conda env
- 2) install packages
- 3) create jupyter kernel
- 4) exit conda env
- UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Recipe 3 – Create a new MATLAB kernel using Conda on BioHPC

\$ ssh yourusername@nucleus.biohpc.swmed.edu

\$ module load python/3.7.x-anaconda

\$ conda create --name my_matlab_env python=3.6

\$ conda activate my_matlab_env

(my_matlab_env) \$ cd /home1/apps/MATLAB/R2020a/extern/engines/python

(my_matlab_env) \$ python3 setup.py build --build-base=/home2/yourusername/tmp install \

--prefix=/home2/yourusername/.conda/envs/my_matlab_env/

(my_matlab_env) \$ pip install matlab_kernel

(my_matlab_env) \$ python -m matlab_kernel install --user --name "my_matlab_demo"

(my_matlab_env) \$ conda deactivate

currently MATLAB only supports 2.7, 3.5, 3.6

1) create conda env

2) install packages

- 3) create jupyter kernel
- 4) exit conda env

Recipe 4 – Create a new conda environment on different partition (One conda env can easily use several GB. /home2 Have only 50 GB storage under ~/)

\$ ssh yourusername@nucleus.biohpc.swmed.edu	
\$ module load python/3.7.x-anaconda	
\$ mkdir /project/yourdepartment/yourusername/conda_envs	# 'conda_env' is arbitrary name
\$ conda createprefix /project/yourdepartment/youruser/conda_envs/your_env_name	
\$ conda activate /project/yourdepartment/youruser/conda_envs/your_env_name	# must reference by path
(long/path/your_env_name) \$ <install additional="" as="" modules="" needed=""></install>	
(long/path/your_env_name) \$ conda deactivate	

Recipe 5 – View and Modify Jupyter kernels

\$ module load python/3.7.x-anaconda

\$ jupyter kernelspec list

my_env

foo

my_matlab_demo

\$ jupyter kernelspec uninstall my_env

Removes kernel, not environment

Recipe 6 – Remove Conda environment

\$ module load python/3.7.x-anaconda

\$ conda env list

my_env

foo

my_matlab_demo

\$ conda env remove --name my_env

Look under ~/.conda/envs

Recipe 6.1 – Clean Conda unused packages and caches

\$ module load python/3.7.x-anaconda

\$ conda clean --all --dry-run

Will remove the following tarballs:

/home2/<your username>/.conda/pkgs

pandocfilters-1.4.2-py_1.tar.bz2 9 KB

r-broom-0.7.6-r40hc72bb7e_0.tar.bz2 1.7 MB

fonts-conda-forge-1-0.tar.bz2 4 KB

if satisfied with the operation to be performed

\$ conda clean –all

Dry run will NOT delete anything

This command will DELETE those packages

Jupyter Notebook on local machine

Run Jupyter Notebook in two ways:

- BioHPC
- ✓ Local computer

Recipe 7 – Install Jupyter Notebook locally using venv

(virtual environment of python)

- \$ mkdir myproject && cd myproject
- \$ python -m venv foo
- \$./foo/bin/activate
- (foo) \$ pip install jupyter
- (foo) \$ <install additional modules>
- (foo) \$ jupyter notebook

Start Jupyter Notebook webserver

Recipe 8: Distribute Conda-based project

(Assumes that you have already followed Recipe 1 or Recipe 3)

Let's say your research is contained in the betsy_research environment

a) You can export conda env to environment.yml

\$ ssh yourusername@nucleus.biohpc.swmed.edu

\$ module load python/3.7.x-anaconda

\$ conda activate betsy_research

(betsy_research) \$ conda env export --file environment.yml

b) If applicable, you can also create venv export of environment

(betsy_research) \$ pip freeze > requirements.txt

Share your project files along with environment.yml and/or requirements.txt

Recipe 9: Work on BioHPC, on a project shared with you. Restore environment based on yml

Let's say **betsy_research** was shared with you:

- research_docs.ipynb
- environment.yml
- other assets

\$ ssh yourusername@nucleus.biohpc.swmed.edu

\$ module load python/3.7.x-anaconda	jupyter research_docs (autosaved)						Logout			
	File	Edit	View	Insert	Cell	Kernel	Widgets	Help	Not Trusted	betsy's research O
\$ cd path_to_environment.yml	₽ +	≈ 4	2	↑ ↓		C Markdo	wn 🔻			

change env name (line1 of environment.yml) to created_env_name if needed

\$ conda env create -f environment.yml

\$ conda activate *created_env_name*

(created_env_name) \$ python -m ipykernel install --user --name created_env_name --display-name "some display name"

Recipe 10: Load venv-compatible project locally using virtual-environment Restore environment based on requirements.txt

Let's say **betsy_research** was shared with you that has requirements.txt:

- research_docs.ipynb
- requirements.txt
- other assets

\$ cd path_to_betsy_research_directory

- \$ python3 -m venv betsy_env
- \$./betsy_venv/bin/activate

(betsy_venv) \$ pip install -r requirements.txt

(betsy_venv) \$ jupyter notebook

Suggestions

- Where applicable:
 - **Consider** not linking to contents on the internet
 - **Consider** using a fixed seed for 'random' number generation for reproducibility
 - Seriously consider using different environments for different projects
 - Always store and distribute your Notebooks (and projects) with dependency specifications

Check training materials on portal – Training – Training slides and handouts

Usage: (Open on BioHPC)

\$ ssh yourusername@nucleus.biohpc.swmed.edu

\$ cd path/to/demo/file

\$ module load python/3.7.x-anaconda

\$ conda create --name biohpc_demo

\$ conda activate biohpc_demo

(biohpc_demo) \$ pip install --requirement requirements.txt

(biohoc_demo) \$ python -m ipykernel install --user --name biohpc_demo --display-name="BioHPC_Demo"

(biohpc_demo) \$ conda deactivate

Check training materials on portal – Training – Training slides and handouts

Usage (Your own machine):

\$ cd path/to/demo/files

\$ python3 -m venv biohpc_demo

\$ chmod +x biohpc_demo_env/bin/activate

\$ source biohpc_demo_env/bin/activate

(biohpc_demo) \$ pip install -r requirements.txt

(biohpc_demo) \$ jupyter notebook

This will create biohpc_demo folder in the current directory

add execution permission to file activate

References

- Jupyter Notebook Documentation
 - https://jupyter.org/documentation
- Conda getting started

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

- Markdown
 - Github Markdown cheat sheet https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
 - Interactive Markdown

https://www.markdowntutorial.com/

Markdown Pad

http://www.markdownpad.com/

