Molecular Dynamcis (MD) Simulation with BioHPC

Peng Lian Computational Research Scientist, BioHPC Septermber 28, 2022

Outline

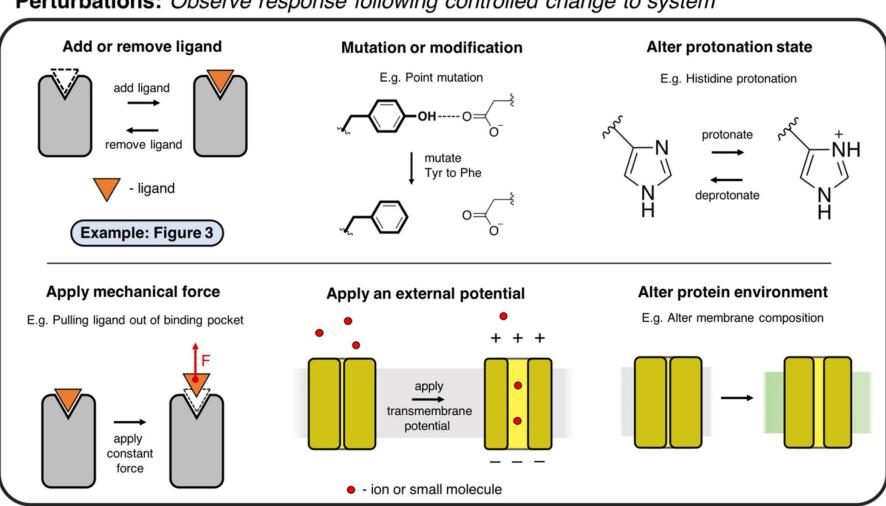
- What is an MD simulation?
- What information can MD simulations provide?
- A Brief theoretical background of MD
- MD on BioHPC
- CHARMM-GUI Input Generator
- Astrocyte MD workflow

What is an MD simulation?

Molecular dynamics is a <u>computer simulation method</u> for analyzing the physical movements of atoms and molecules.

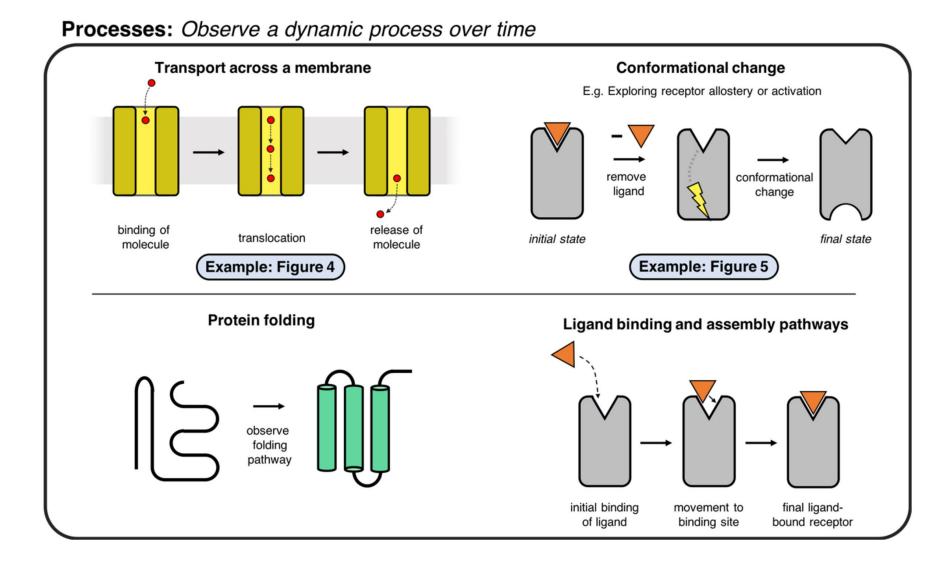
The atoms and molecules are allowed to interact for <u>a fixed period of time</u>, giving a view of <u>the dynamic "evolution" of the system</u>.

In the most common version, the trajectories of atoms and molecules are determined by <u>numerically solving Newton's equations of motion</u> for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanics <u>force fields</u>.


What information can MD simulations provide?

Conformational exploration Model refinement and testing Image: starting structure Image: starting model (high energy)

Structural and dynamic studies: Studying conformational flexibility and stability


Neuron. 2018 Sep 19; 99(6): 1129–1143. doi: 10.1016/j.neuron.2018.08.011

What information can MD simulations provide?

Perturbations: Observe response following controlled change to system

What information can MD simulations provide?

Accuracy vs efficiency of different simulation techniques

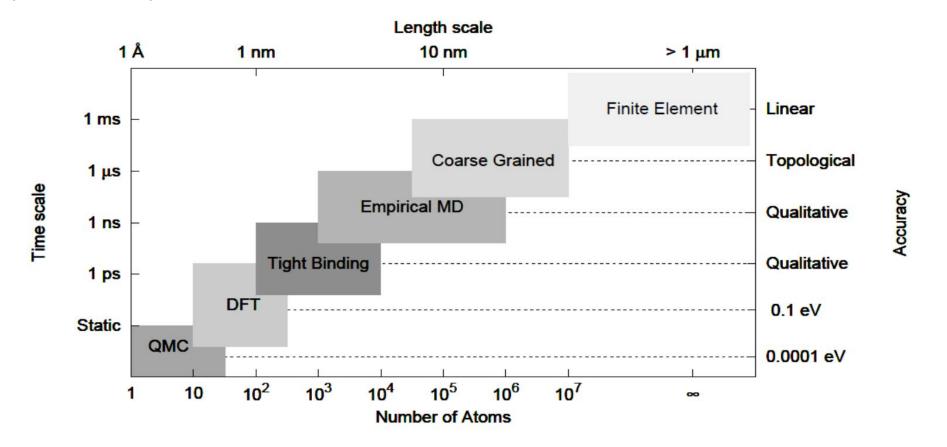
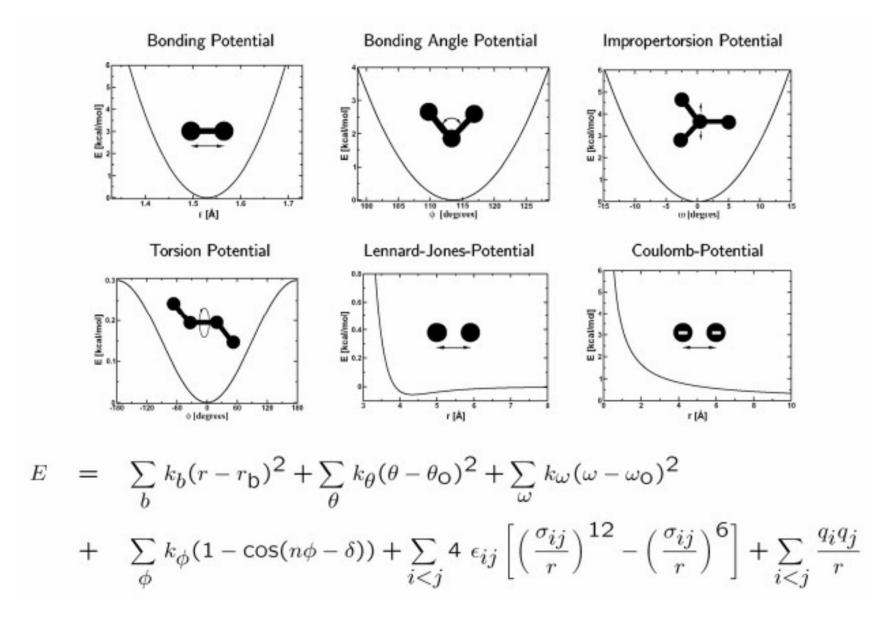
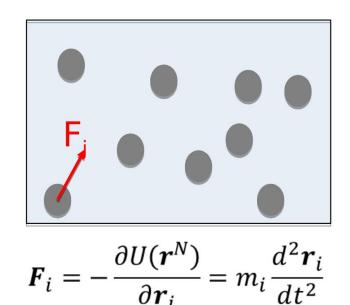



Figure 1. Schematic representation of the range of length- and time-scales accessible to a variety of modelling methods, from quantum Monte Carlo (QMC) for very accurate, very expensive static calculations through to approximate methods such as finite-element modelling.

Classical CHARMM AMBER GROMOS MMFF OPLS


Polarizable CHARMM AMBER AMOEBA

Reactive ReaxFF

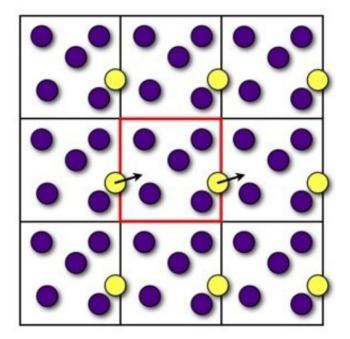
Coarse-grained MARTINI

Water TIP3P TIP4P SPC

 Generate a dynamical trajectory by integrating Newton's equations of motion, with suitable initial and boundary conditions

Verlet algorithm:

$$\boldsymbol{r}_{i}(t_{0} + \Delta t) = \boldsymbol{r}_{i}(t_{0}) + \boldsymbol{v}_{i}(t_{0})\Delta t + \frac{1}{2}\boldsymbol{a}_{i}(t_{0})\Delta t^{2} + \frac{1}{3!}\ddot{\boldsymbol{r}}_{i}(t_{0})\Delta t^{3} + O(\Delta t^{4})$$
$$\boldsymbol{r}_{i}(t_{0} - \Delta t) = \boldsymbol{r}_{i}(t_{0}) - \boldsymbol{v}_{i}(t_{0})\Delta t + \frac{1}{2}\boldsymbol{a}_{i}(t_{0})\Delta t^{2} - \frac{1}{3!}\ddot{\boldsymbol{r}}_{i}(t_{0})\Delta t^{3} + O(\Delta t^{4})$$


$$\boldsymbol{r}_i(t_0 + \Delta t) + \boldsymbol{r}_i(t_0 - \Delta t) = 2\boldsymbol{r}_i(t_0) + \boldsymbol{a}_i(t_0)\Delta t^2 + O(\Delta t^4)$$

Positions at $t_0 + \Delta t$ can be computed from actual positions and forces, and previous positions.

Error is $O(\Delta t^4)$.

Verlet is simple, efficient, stable and reasonably accurate.

Periodic boundary conditions (PBC)

- To avoid surface effects
- To get bulk properties with a limited number of atoms
- When an atom leaves the cell, it is replacted by another with the same velocity, entering from the opposite cell face
- Beware of artificial periodicity

MD on BioHPC

Software:

NAMD/2.11b1/multicore-CUDA NAMD/2.14/ibverbs-smp-CUDA NAMD/2.9/ibverbs NAMD/2.9/multicore

NAMD/2.14/ibverbs NAMD/2.14/multicore NAMD/2.9/ibverbs-smp NAMD/2.9/multicore-CUDA

NAMD/2.14/ibverbs-smp NAMD/2.14/multicore-CUDA NAMD/2.9/ibverbs-smp-CUDA

namd/gcc/openmpi/2.12

namd/gpu/2.14

gromacs/2018.4
gromacs/5.1.4
gromacs/openmpi/plumed/2018.4
gromacs/5.0.4
gromacs/openmpi/5.0.4
gromacs/plumed/2021

amber/12 amber/20 amber/22

openmm/gpu/7.6.0

lammps/2018-12-12 lammps/2020-29-10 lammps/2021-24-06 lammps/2021-25-07 lammps/2021-27-08

desmond-maestro/3.6.1.1

MD on BioHPC

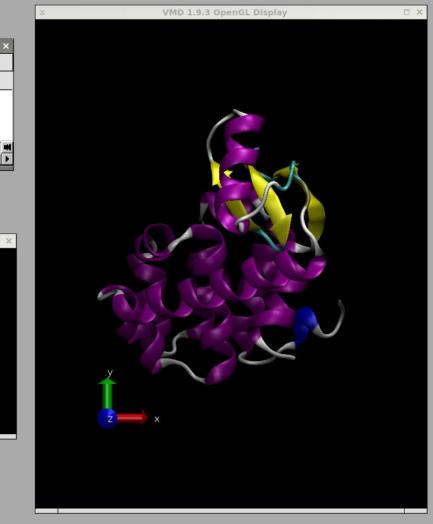
```
Files need to prepare (e.g. NAMD2):
```

A coordinates file (*.pdb/*.crd)

```
A topology file (*.psf)
```

```
A configuration (*.inp)
```

```
Forcefield files (par_*, toppar_*, *.prm, *.inp, *.str)
```


```
A sbatch script (*.sh)
```

MD on BioHPC

Prepare files with VMD:

Demonstrate with Lysozyme, PDB: 1L58

		VMD	Main				×
ile Molecule	Graphics	Display	Mouse	Extensions	s Help		
DTADF	Molecule		At	oms	Frames	Vol	
T A D <mark>F</mark>	1158.pdb		14	62	1	0	
<u>।</u>			_1				
◀ zoom □	Loop	🔹 step 🕻	1	speed	J		
) Textures:)Dynamically)/usr/local/)	rendering m 2-D (8192x8 loaded 2 plu lib/vmd/plug	192), 3–D ugins in d ins/LINUXA	ilable. (512x512) irectory: MD64/molt	: file		(8)	×
) Textures:) Jgnamically) /usr/local/) Using plugin) Beterwining) Analyzing si) Analyzing si) Atows: 1) Bonds: 1) Fragments) Fragments) Finished will	2-D (8192x8) loaded 2 plu plugin pdb - pdb for or bond struct bonds dupli rructure 462 330 D Dihedrals : 10 Anglet: : 316 US1 S1 S1 S1 S2 Proth coordinat : 152 Proth coordinat	de is ava 192), 3-D ugins in d ins/LINUMA for struct ordinates ure from cated from ; 0 Impro ure form d cated from ; 0 Impro trasidues; tein: 1 = file /ho cientific	ilable. (512x512: lirectory) MD64/moli ure file from file listances existing pers: 0 lihedralty 97 (pro Nucleic: me/s1904 results)	file /home/s19(search g structure Cross-terr upes: 0 Ir otein) and 0 50/1158.pdt	0450/1158.p 90450/1158. * **** **** **** 165 (none) ** ***	(8) >db ,pdb ≈: 0	×
) Textures:) Upgnamically) Jusing plugin) Jet of Using plugin) Eliminating) Analyzing si) Bonds: 1:) Angles: () Segments:) Fragment:) Fragment:) Fragment:) Completelyg Completelyg) Frishwan, D	2-D (8192x8) loaded 2 plu plugin pdb - pdb for or bond struct bonds dupli rructure 462 330 D Dihedrals : 10 Anglet: : 316 US1 S1 S1 S1 S2 Proth coordinat : 152 Proth coordinat	de is ava 192), 3-D ugins in d ins/LINUM for struct ordinates ure from d cated from ; 0 Impro upes: 0 D residues: tein: 1 e file /ho cientific f the prog (1935) Kno	ilable. (512x512: irectory: MHD64/mol- ure file from fil- listance: existing pers: 0 ihedralty pers: 0 ihedralty 97 (pro Nucleic: me/s1304 results H ram STRI wledge-bx	file /home/s190 search g structure Cross-terr uppes: 0 Ir otein) and 0 00/1158.pdf pased in pp DE, please ased secon	0450/1158.p 30450/1158, e mpropertype 165 (none) 5. or reference: ary struct	(8) xdb .pdb :ss: 0) ; ; ; ; ; ; ;	×

CHARMM-GUI Input Generator

CHARMM-GUI https://charmm-gui.org

A web-based platform to build complex systems and prepare their inputs with well-established and reproducible simulation protocols.

It supports CHARMM, NAMD, GROMACS, AMBER, GENESIS, Tinker, LAMMPS, Desmond, and OpenMM.

Demonstration with Solution Builder.

Input Generator Job Retriever Force Field Converter PDB Reader Glycan Reader & Modeler Ligand Reader & Modeler **Glycolipid Modeler** LPS Modeler Nanomaterial Modeler Multicomponent Assembler Solution Builder Membrane Builder Martini Maker PACE CG Builder Polymer Builder **Drude Prepper Enhanced Sampler** Free Energy Calculator LBS Finder & Refiner Ligand Designer High-Throughput Simulator **PBEQ Solver** Implicit Solvent Modeler MAP Utilizer **DEER** Facilitator NMR Structure Calculator **Boundary Potential Utilizer** GCMC/BD Ion Simulator

Astrocyte MD workflow

Astrocyte CHARMM-GUI MD Workflow

https://astrocyte.biohpc.swmed.edu/workflow/49/view

Demonstration!

Published Versions

Version	Git Tag	
astrocyte_charmmgui_md - 1.1.0	Astrocyte CHARMM-GUI MD Workflow Run MD simulations based on the input files from CHARMM-GUI at https://charmm-gui.org. Build trajectory.vmd for visualizing results. Author: Peng Lian Contact: biohpc-help@utsouthwestern.edu	 Run this Version Documentation Developer Information
astrocyte_charmmgui_md - 1.0.0	Astrocyte CHARMM-GUI MD Workflow This workflow performs MD simulation based on the input files generated by CHARMM- GUI(https://charmm-gui.org/). Author: Peng Lian Contact: biohpc-help@utsouthwestern.edu	 Run this Version Documentation Developer Information

Thanks for your attention!

biohpc-help@utsouthwestern.edu