UT Southwestern Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Data handling with R

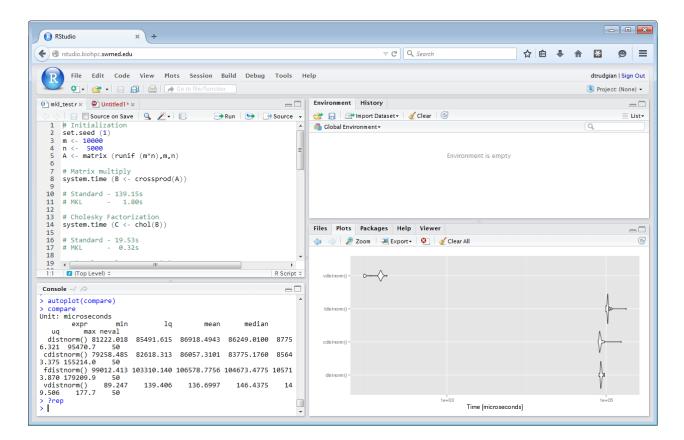
The meeting will begin soon. Please mute your microphone.

[email] [register] [portal] biohpc-help@utsouthwestern.edu portal.biohpc.swmed.edu/accounts/register portal.biohpc.swmed.edu

Welcome! A Quick Note Before Getting Started...

- Most future BioHPC training sessions will be hybrid!
- Choose to join us online, or <u>In-Person</u>
- Classroom Location: G9.102
- Users are encouraged to attend <u>in-person</u>.

Outline


- Background
 - Advantages of R
 - R and Rstudio on BioHPC
 - R markdown
 - Variable types and data structure in R
- Why we need data preprocessing?
- Tasks in data preprocessing
 - Data cleaning, data integration, data transformation, data reduction, and data discretization
 - R code examples

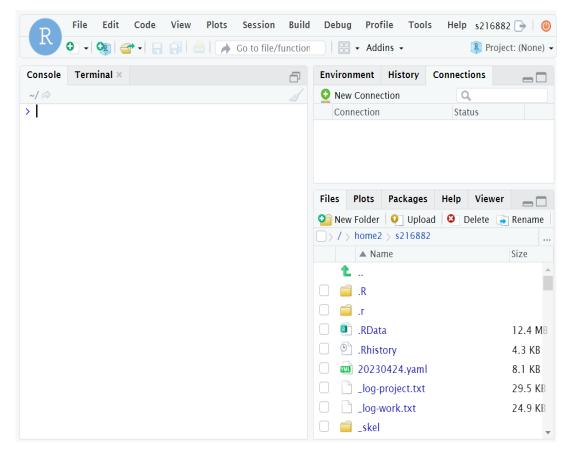
Advantages of R

- The dominant statistics environment in academia
- Large number of packages to do a lot of different analysis
- Excellent packages in Bioinformatics
 - Bioconductor: open-source project, provide tools for the analysis and comprehension of high-throughput genomic data
 - Bioconductor: has different way to install packages
- (Relatively) easy to accomplish complex statistic work

RStudio – An IDE for R, on the web

Rstudio Server, http://rstudio.biohpc.swmed.edu

BioHPC optimized R, access to cluster storage, persistent sessions, R 3.3.2


Rstudio on demand

Standard 20 hr limit

Whole node to yourself

You can choose R/3.3.2, 3.4.1, 3.5.1 with Seurat, R/3.6.1, R/4.0.2, R/4.1.1

We are working on R/4.2

Portal.biohpc.swmed.edu --> BioHPC Ondemand --> Ondemand Rstudio

https://portal.biohpc.swmed.edu/intranet/terminal/ondemand_rstudio/

When to use Rstudio server or Rstudio OnDemand

- Any small, short-running data analysis tasks
- Development work with small datasets
- Creating R Markdown documents

Rstudio Server rstudio.biohpc.swmed.edu

Large datasets, parallel code

RStudio OnDemand

Long running jobs

Terminal R on the cluster...

Using R on the cluster / clients

[s216882@Nucleus006 ~]\$	\$ module av R/	
	/cm/shared/	modulefiles
R/2.15.3-intel	R/3.3.2-gccmkl_20181025	R/3.6.1-img
R/3.0.2	R/3.4.1-gccmkl	R/4.0.2-gccmkl
R/3.1.0	R/3.4.1-gccmkl_20181025	R/4.1.1-gccmkl
R/3.1.0-intel	R/3.5.1-gccmkl	R/4.1.1-img
R/3.2.1-intel	R/3.5.1-gccmkl_20181025	R/4.2.2-img
R/3.3.2-gccmkl	R/3.6.1-gccmkl	

Default is R/3.3.2-gccmkl - module load <package_name>

Rstudio On Demand support R/3.3.2, 3.4.1, 3.5.1 with Seurat, 3.6.1, 4.0.2, R/4.1.1 All gccmkl

Use 'R' for command line R, or run scripts with 'Rscript'/submit your script \$ Rscript -vanilla myjob.R

Installing Packages and troubleshooting

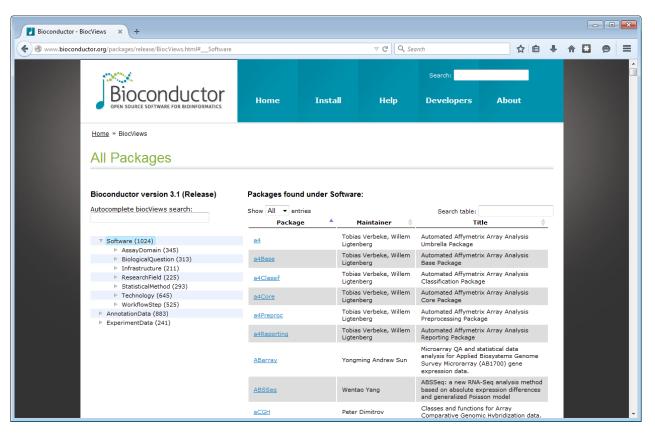
We have a set of common packages pre-installed in the R module

You can install your own into your home directory "check .libPaths() in R"

install.packages("microbenchmark")

personal directory: ~/R/x86_64-pc-linux-gnu-library/<R ver>

Some packages need additional libraries, won't compile successfully.


- Ask us to install them for you (<u>biohpc-help@utsouthwestern.edu</u>)

Personal R library – troubleshooting package installation

- Terminal R and Rstudio server, Rstudio OnDemand shared personal libraries
- For example, if you has error in Rstudio OnDemand 4.0.2, please try corresponding terminal R/4.0.2-gccmkl to install the package into your personal library
- Sys.setenv(http_proxy= 'http://proxy.swmed.edu:3128')
 Sys.setenv(https_proxy= 'http://proxy.swmed.edu:3128')

Bioconductor

A comprehensive set of Bioinformatics related packages for R

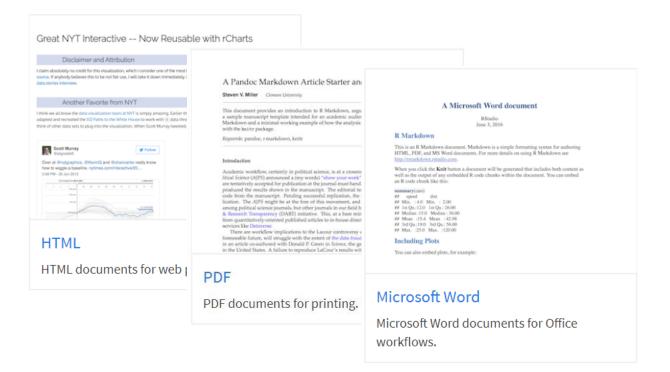
Software and datasets

Bioconductor

Base packages installed, plus some commonly used extras

Install additional packages to home directory:

if (!requireNamespace("BiocManager", quietly = TRUE))
 install.packages("BiocManager")


BiocManager::install("GenomeInfoDb") #specific package

Ask <u>biohpc-help@utsouthwestern.edu</u> for packages that fail to compile

Rmarkdown / Knitr

Write R code inside markdown documents

Create attractive HTML, PDF, Word files that include both code and output

https://rmarkdown.rstudio.com/lesson-1.html

Variables in R

- character: "treatment", "123", 'A', "A"
- numeric: 23.44, 120, NaN, Inf
- integer: 4L, 1123L
- Iogical: TRUE, FALSE, NA
- factor: factor("Hello"), factor(8)
 - -categorical variables


```
> class("hello")
[1] "character"
> class(3.844)
[1] "numeric"
> class(77L)
[1] "integer"
> class(factor("yes"))
[1] "factor"
> class(TRUE)
[1] "logical"
```

Operators

- Arithmetic Operators
- Relational Operators
- Logical Operators
 &,|
- Assignment Operators
- Miscellaneous Operators

> &,|,!

>

> +,-,*,/,^,%%

>,<,==,!=

- > <- or = or ->
- ≻ :, %in%

R data structures summary

	Homogeneous	Heterogeneous
1d	Atomic vector	List
2d	Matrix	Data Frame Tibble
nd	Array	

R data structures

Vectors

```
> a <- c(1,2,5.3,6,-2,4) # numeric vector
> a
> b <- c("one","two","three") # character vector
> b
> c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) #logical vector
> (c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)) #logical vector</pre>
```


Matrices (All columns in a matrix must have the same mode(numeric, character, etc.) and the same length)

> y <- matrix(1:20, nrow=5, ncol=4) # generates 5 x 4 numeric matrix > cells <- c(1,26,24,68) > rnames <- c("R1", "R2") > cnames <- c("C1", "C2") > mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames, cnames))

R data structure 2

Arrays are similar to matrices but can have more than two dimensions

```
> a <- array(c("green","yellow"),dim = c(3,3,2))</pre>
```

 Data Frames are more general than a matrix, in that different columns can have different modes (numeric, character, factor, etc.)
 Are the most commonly used data structure in R

```
> d <- c(1,2,3,4)
> e <- c("red", "white", "red", NA)
> f <- c(TRUE,TRUE,TRUE,FALSE)
> mydata <- data.frame(d,e,f)
> mydata
> names(mydata) <- c("ID","Color","Passed") # variable names</pre>
```


Import data

R can read data from files

- Very important concept: Working Directory (this is where R will read data from by default)
 - > getwd() # get current working directory
 - > setwd("<new path>") # set working directory

Note that the forward slash should be used as the path separator even on Windows platform > setwd ("C:/MyDoc")

File import - csv

CSV File

- Each cell inside is separated by a special character, which usually is a comma, although other characters can be used as well. The first row of the data file should contain the column names instead of the actual data.
- > mydata = read.csv("mydata.csv") # read csv file

Coll,Col2,Col3
100,a1,b1
200,a2,b2
300,a3,b3

more import functions - <u>http://www.r-tutor.com/r-introduction/data-frame/data-import</u>

File import – csv example

The behavior of the different import functions varies slightly.

> data<read.csv("household_power_consumption.txt",
sep=";", header = FALSE, stringsAsFactors=FALSE,
na.strings = "?", skip=66637 , nrows=2880)</pre>

> colnames(data) <-</pre>

names(read.csv("household_power_consumption.txt"
, sep=";", nrows=1)) #set the column names

File import – excel file

 Quite frequently, the sample data is in Excel format, and needs to be imported into R prior to use. For this, we can use the functions from the *readxl* package. It reads from an Excel spreadsheet and returns a data frame.

> library(readxl) # load readxl package

- > mydata <- read_xls("mydata.xls") # read from first sheet</pre>
- > mydata <- read excel("mydata.xlsx")</pre>
- Recommendation when issues occur: Store Excel file as tab separated file and use RStudio "Import" function.

Using Rstudio to import

			Debug Profile Tools H	elp		
		Go to file/fu	nction [<u>[2]]</u> • Addins •			
Console Tern		s ×		ē.	Eperforment History Connection Tutorial	== 0 ≣ Ust • ©
R version Copyright Platform:	Import Excel D	Jata				
Platform:	File/URL:					
R is free You are we	-					Browse
Type 'lice	Data Preview	N:				
R is a col						
Type 'cont 'citation(
Type 'demo						
Type 'demo 'help.star Type 'q()'						
> library(00
>						0.0
						0
	Import Opti	ons:			Code Preview:	0 00
	Name:	dataset	Max Rows:	First Row as Names	<pre>library(readx1) dataset <- read_excel(NULL)</pre>	0.0
	Sheet:	Default	▼ Skip:	0 Ø Open Data Viewer	View(dataset)	
	Range:	A1:D10	NA:			
	-					
	(2) Reading	Excel files using readx	15			Import Cancel

Working with data – helpful commands

Get to know your data ...

- > ?mtcars # General info about data set
- > head (mtcars) # First couple of lines
 - # Shows that the data is a data frame: A rectangular structure
- > str(mtcars) # Each column has same type, but different
 - # columns may have different types
- > names (mtcars) # List the column names
- > summary(mtcars) # summary statistics

Dealing with missing values

Counting missing values

> x < - c(1, 2, NA, 4)

> sum(is.na(x)) # sums up the missing values
in a column

> 1

Which one is NA?

> which(is.na(x))

> 3

Dealing with missing values

- Excluding Missing Values from Analyses is often necessary since the default is to propagate missing values. Many functions have *na.rm* argument to remove them
 - > x <- c(1,2,NA,3)
 - > mean(x) # returns NA
 - > mean(x, na.rm=TRUE) # returns 2

- The function *complete.cases()* returns a logical vector indicating which cases are complete.
 - # list rows of data that have missing values
 - > mydata[!complete.cases(mydata),]
- The function na.omit() returns the object with listwise deletion of missing values.
 - # create new dataset without missing data
 - > newdata <- na.omit(mydata)</pre>

Data export

- As for import there are endless export options
- Check the arguments in the documentation for special cases

> write.table(mydata, "c:/Users/[username]/mydata.txt", sep="\t")

> write.csv(mydata, file = "mydata.csv", row.names = FALSE, quote = FALSE)

```
> library(xlsx)
```

> write.xlsx(mydata, "c:/Users/[username]/mydata.xlsx")

```
> write.xlsx(x = mydata, file = "testexcelfile.xlsx", sheetName =
"TestSheet", row.names = FALSE)
```


Why we need data preprocessing?

Real world data is generally:

- Incomplete
 - Certain attributes or values or both are missing, or only aggregate data is available
- Noisy
 - Data contains errors or outliers
- Inconsistent
 - Data contains differences in codes or names

Ref to <u>https://towardsdatascience.com/data-preprocessing-e2b0bed4c7fb</u>

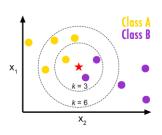
Tasks in data preprocessing

- Data cleaning
 - Involves filling of missing values
 - Smoothing or removing noisy data and outliers along with resolving inconsistencies
- Data integration
 - Involves integrating data from multiple sources such as databases and files, etc
 - The data obtained can be structured, unstructured or semi-structured in format
- Data transformation
 - Involves normalization and aggregation of data according to the needs of the data set
- Data reduction
 - The number of records or the number of attributes or dimensions can be reduced
 - reduced data should produce the same results as original data
- Data discretization
 - as a part of data reduction
 - The numerical attributes are replaced with nominal ones

Data cleaning: Imputation

- Task: filling of missing values
- Remove variables having missing values
 - > na.omit(df) ## method-1 for removing rows with some NAs
 - > df[complete.cases(df),] ## method-2
- Using most frequent or zero values

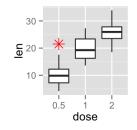
> df[is.na(df)] <- 0


Using mean/median values

> mean(df[,1], na.rm=TRUE)

	col1	col2	col3	col4	col5			col1	col2
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0
1	9	NaN	9.0	0	7.0	\longrightarrow	1	9.0	11.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0

	col1	col2	col3	col4	col5
0	2.0	5.0	3.0	6.0	7.0
1	9.0	11.0	9.0	0.0	7.0
2	19.0	17.0	6.0	9.0	7.0


- Using k-Nearest Neighbors (k-NN)
 - Using k-nearest neighbor averaging, impute.knn()

Jeon Lee, "machine learning using R", 2022

Data cleaning: Outlier Removal

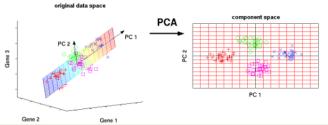
- Outlier detection
 - Using percentile info, boxplot
 - > ggplot(ToothGrowth, aes(x=dose, y=len)) +
 geom_boxplot(outlier.colour="red", outlier.shape=8, outlier.size=4)
 ## example for 'ToothGrowth' data

Interquartile range (IQR

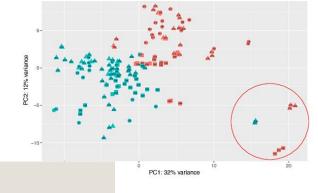
01

Outliers

Maximum


(Q3-1.5*IQR)

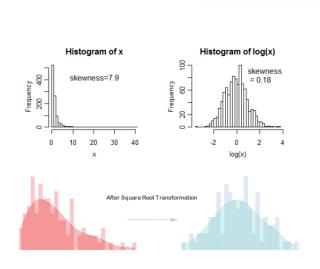
Outliers

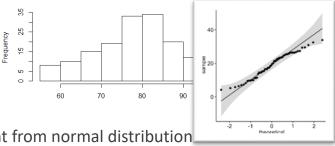

" Minimum

(01-1.5*IOR)

Using sample distance, PCA plot

- > pca_res <- prcomp(df, scale. = TRUE)</pre>
- > autoplot(pca_res) ## 'ggfortify' package

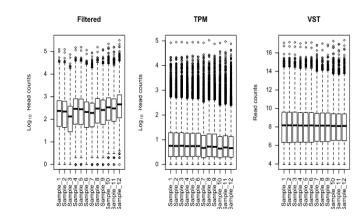


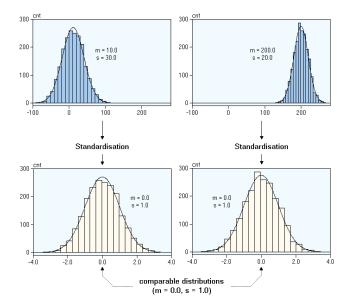

Data transformation: Normalization (1)

- Check each variable's distribution
 - > hist(values, breaks=10, xlim=c(50, 100)) ## using a histogram > ggqqplot(values) ## using a Q-Q plot, ggpubr package
- Test normality
 - P-value < 0.05 implying that the distribution is significantly different from normal distribution.

> shapiro.test(values)

- Transformation sometimes required
 - Log-transform, log(x): RNA-seq, MS metabolomics, etc.
 - Square root transform, sqrt(x)
 - Reciprocal Transformation, 1/x




Data transformation: Normalization (2)

- Z-transformation required
 - To make variables comparable
 - values converted into z-scores: $z_i = \frac{x_i \bar{x}}{s}$

> scale(x, center=TRUE, scale=TRUE) ## z-transformation

Variance Stabilizing Transformation (VST) normalization

