## UT Southwestern Medical Center

Lyda Hill Department of Bioinformatics

# Visualization on BioHPC

[web] portal.biohpc.swmed.edu [email] biohpc-help@utsouthwestern.edu

Updated for 2021-07-14

BioHPC

#### Outline

- What is Visualization
  - Scientific visualization
  - Workflow examples
- Visualization on BioHPC
  - Storage and management of image
    BioHPC cluster & Lamella cloud storage
    BioHPC OMERO (Open Microscopy Environment Remote Objects)
  - Image processing/Analyzing with HPC
  - Visualization (3D volume rendering)
    Concepts and examples of different type of volume rendering
    GPU rendering v.s. CPU rendering



#### Why is data visualization important?

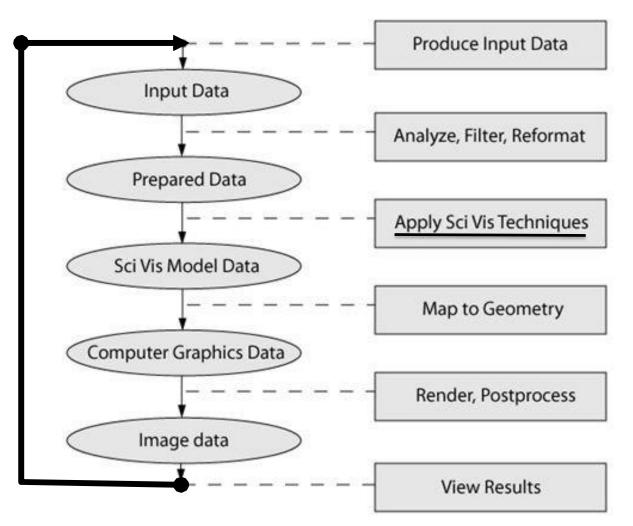
#### 2002 Revenue and Profits (in US\$ Thousands)



Data visualization, or "data viz," is becoming largely important as the amount of data generated is increasing and big data tools are helping to create meaning behind all of that data.

Courtesy of Amit Amritkar, Ph.D., Computer Scientist, BioHPC




### Value of data visualization

- Two basic types
  - Exploration: find a story the data is telling you
  - Explanation: tell a story to audience
- Represent large quantities of data coherently
- Help the user to discern relationship in the data
- Does not distort what the data has to say
- Takes into account your audience's expectations

https://www.slideshare.net/idigdata/data-visualization-best-practices-2013/5-The\_Value\_of\_Data\_Visualization



#### Scientific visualization pipeline



Courtesy of Amit Amritkar, Ph.D., Computer Scientist, BioHPC



## **Designing visualization**

- Chart Choosers
  - http://labs.juiceanalytics.com/chartchooser/index.html
  - http://www.datavizcatalogue.com/
  - http://extremepresentation.typepad.com/blog/2006/09/choosing\_a\_good.html
- Trifecta check
  - What is the practical <u>QUESTION</u>?
  - What does the DATA say?
  - What does the VISUAL say?
  - Ideally, the results of all three investigations are one and the same.

Courtesy of Amit Amritkar, Ph.D., Computer Scientist, BioHPC



#### **Audience considerations - Color palettes**



#### **Color Simulation Controls**

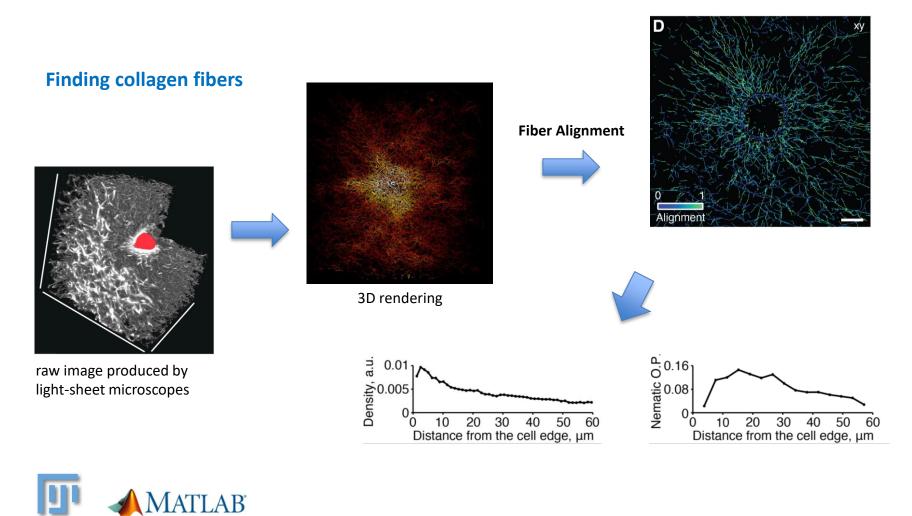
(or switch to the color selection controls)

#### Simulate colors as percieved by a user with

normal trichromatic color vision

and a  $PC \sim$  color  $\sim$  monitor.

clear simulation settings


(Open a new window with more information about color blindness or gamma values.)

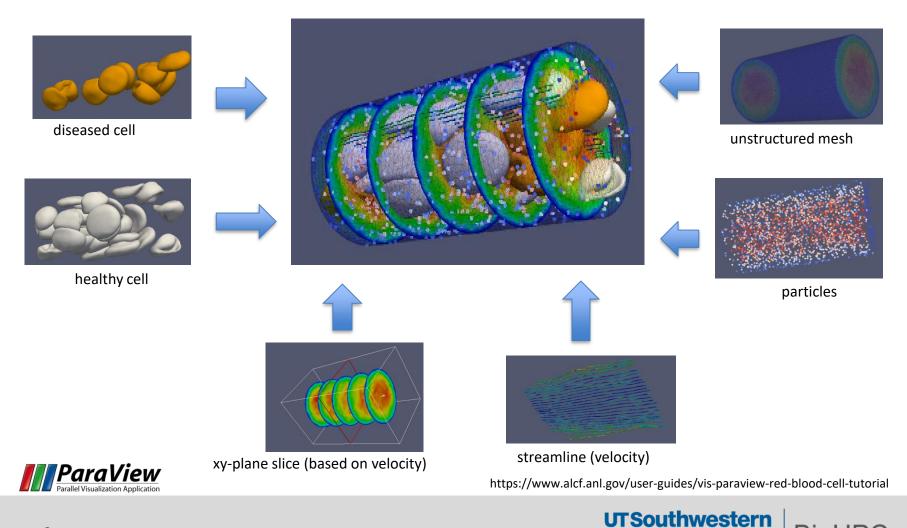
Courtesy of Amit Amritkar, Ph.D., Computer Scientist, BioHPC

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics

 $\sim$ 

## Scientific Visualization : from single image/view to multiple datasets

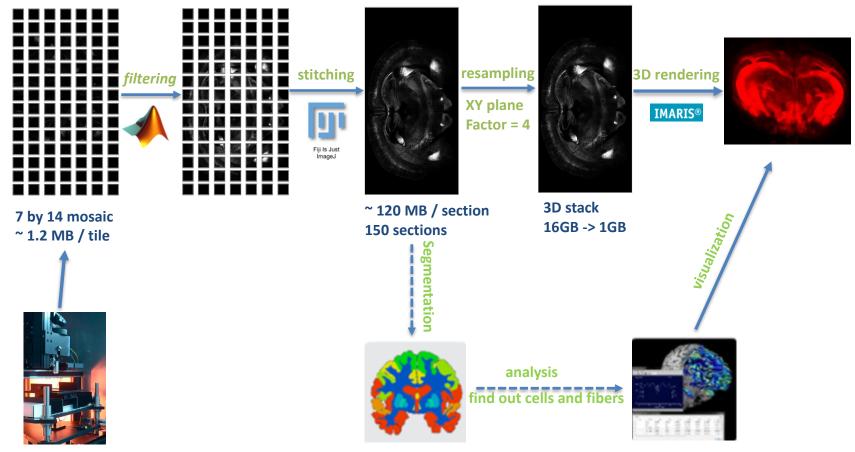



\* Example provided by Dr. Meghan Driscoll From Dr. Danuser lab



Fiji Is Just ImageJ

## Scientific Visualization : from multiple datasets to a single image/view

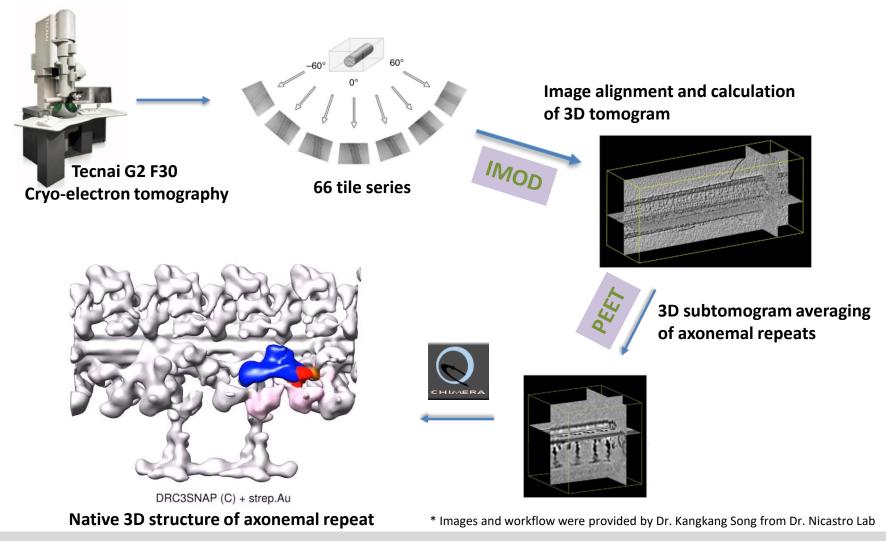

#### **Red blood cell**



**BioHPC** 

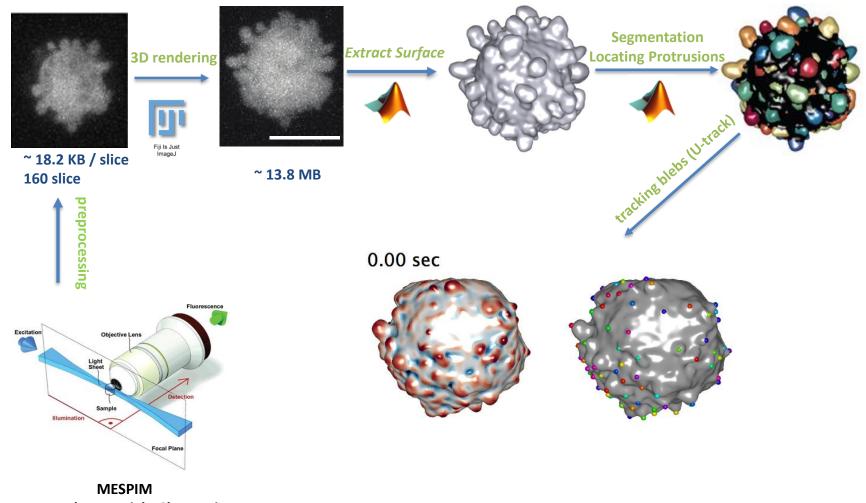
Medical Center Lyda Hill Department of Bioinformatics

#### From image to understanding – workflow of whole brain image analysis




TissueVision TissueCyte 1000

\* Images and workflow were provided by Dr. Denise Ramirez from WBMF




#### From image to understanding – workflow of visualizing the native ultrastructure of motile cilia



UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

## From image to understanding - workflow of bleb detection and tracking



2-photon Bessel Beam Light Sheet Microscope

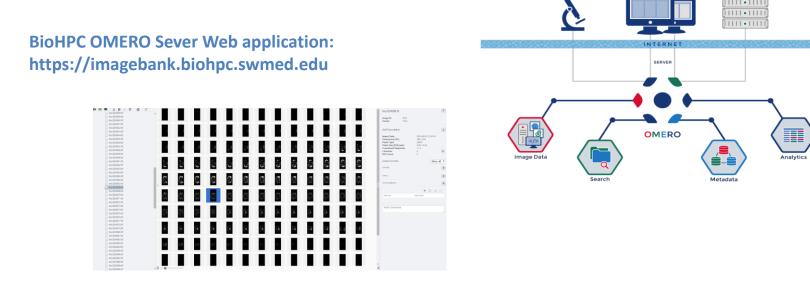
- Images were taken by Reto Fiolka, Kevin Dean, and Erik Welf from Dr. Danuser Lab
- Bleb detection and tracking were processed by Meghan Driscoll from Dr. Danuser Lab



## **Resources on BioHPC**

1. Storage and management of images




3. Scientific Visualization (3D volume rendering)



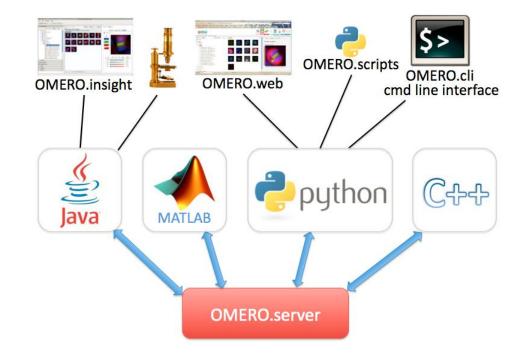


## Storage and management of images -- OMERO

## Open Microscopy Environment Remote Objects



Acquisition


Clients

Processing

#### Client

 Download and install the OMERO desktop client from: <u>https://www.openmicroscopy.org/omero/downloads/</u>





OMERO lets you keep your images well organized and more!







Image processing/Analyzing with HPC : parallelization

## **BioHPC Tutorials**



• Parallel Programming in Matlab on BioHPC(MDCS and parallel tool box)



• Python on BioHPC



## Image processing/Analyzing with HPC : MPI enabled software

## **Online Tutorials**

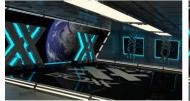


http://bio3d.colorado.edu/imod/doc/etomoTutorial.html http://bio3d.colorado.edu/PEET/PEETmanual.html



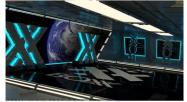
http://www2.mrc-lmb.cam.ac.uk/groups/scheres/relion13\_tutorial.pdf






## Scientific Visualization (3D volume rendering)

## How much faster is GPU rendering as compared to CPU rendering?


Benchmarking (with the same image quality)

Rendered with V-Ray Advanced CPU



3.4 GHz 8 core Intel® Xeon® Render Time = 19 minutes 11 seconds

Rendered with V-Ray RT GPU



High-end NVIDIA GPU with 2688 CUDA cores Render Time = 3 minutes 4 seconds many slower cores v.s. few fast cores

#### **BioHPC GPU resources**

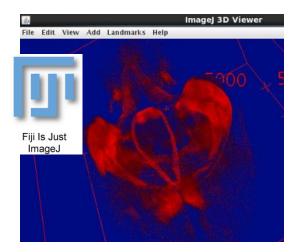
| Partition Name | Number of Nodes | GPU Type            | GPU memory  |
|----------------|-----------------|---------------------|-------------|
| GPU            | 8               | Tesla K20/K40/K6000 | >=5GB       |
| GPUp4          | 16              | Tesla P4            | 8GB         |
| GPUp40         | 16              | Tesla P40           | 24GB        |
| GPUp100        | 12              | 2x Tesla P100       | 16GB/device |
| GPUv100s       | 32              | Tesla V100          | 32GB        |
| GPU4v100       | 12              | 4x Tesla V100       | 32GB/device |
| GPUA100        | 16              | Ampere A100         | 40GB        |

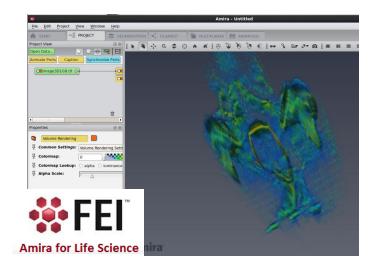
http://blog.boxxtech.com/2014/10/02/gpu-rendering-vs-cpu-rendering-a-method-to-compare-render-times-with-empirical-benchmarks/

Lyda Hill Department of Bioinformatics

**BioHP** 

Web based visualization access: <u>https://portal.biohpc.swmed.edu/terminal/webgui/</u>


- WebGUI
  reserve a CPU node
- WebGPU


reserve a GPU node, good for ImageJ, Amira, stand-alone paraview or compile your CUDA code step 1: add visualization software as a module: module load <software name> step 2: vglrun <software name>

Web based visualization server access: https://portal.biohpc.swmed.edu/terminal/webdesktop/

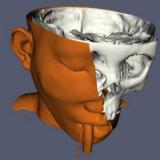


## Scientific Visualization (3D volume rendering)

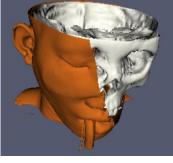


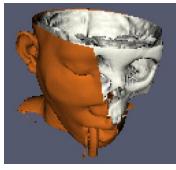







UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics


## Scientific Visualization (3D volume rendering) -- Big Data Visualization


#### How to interactively manage visually overwhelming amounts of data

#### **Option A: Resampling on original dataset**









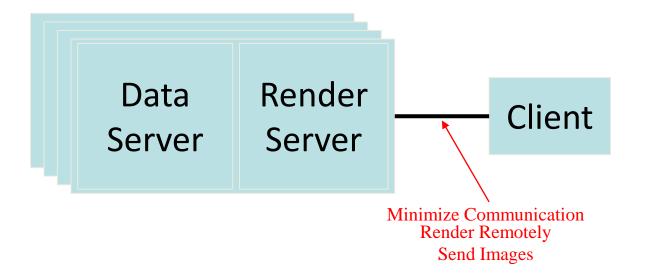


#### **Original Data**

Subsample Rate: 2 pixels

Subsample Rate: 4 pixels

Subsample Rate: 8 pixels


## **Option B: Parallel visualization** e.g, paraview for Interactive Remote Parallel Visualization

- Allocate multiple nodes for visualization, each node/process will process one part of the image



Scientific Visualization (3D volume rendering) -- Big Data Visualization

Client-Server mode of ParaView (remote visualization)



- 1. Start the remote server
- 2. Configuring a server connection
- 3. Connect to the remote server

The ParaView Guide, p. 191: https://www.mn.uio.no/astro/english/services/it/help/visualization/paraview/paraviewguide-5.6.0.pdf



- Let us know if there is any specific visualization software that you want us to install
- Any problems with current visualization softwares?
- For questions and comments please email the ticket system: <u>biohpc-help@utsouthwestern.edu</u>

