UT Southwestern Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

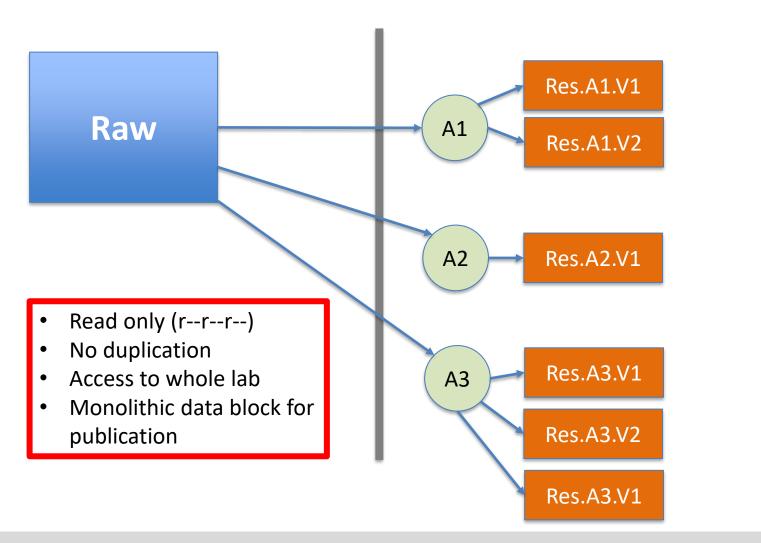
Lab Data Management

A user perspective

March 22, 2023

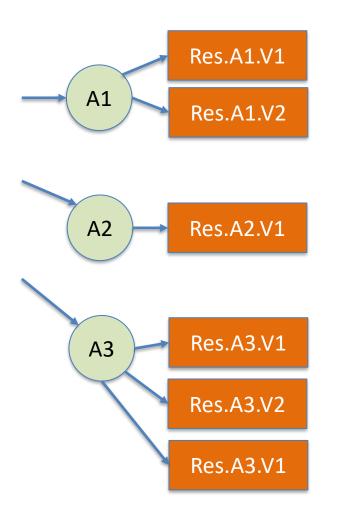
Agenda

- Challenges in implementing robust data management practices – what to look for
- Ideas on implementing such practices on BioHPC
- Interfacing lab data management strategies with data sharing requirements by journals and funders
- A word or two on NIH's data management and sharing requirements
- A word on data retention
- The great new promise: BioHPC's plans for a 3-tier storage system


Danuser/Fiolka labs use case

- 500 700 TB of image data
 - Large files and large stacks of small files
- 30 users
- Mix of commercial software, open-source packages, home-written software
 - Communication between packages via filesystem
- Multiple separable projects
- Each project involves
 - > 1 or several data generators
 - > 1 or several data analysts with *distinct* research questions
- Same data shared over multiple publications
- Data reuse over generations of lab members / trainees
- Large intermediate result files
 - Quasi-duplication of data

3 Rules for Lab Data Management



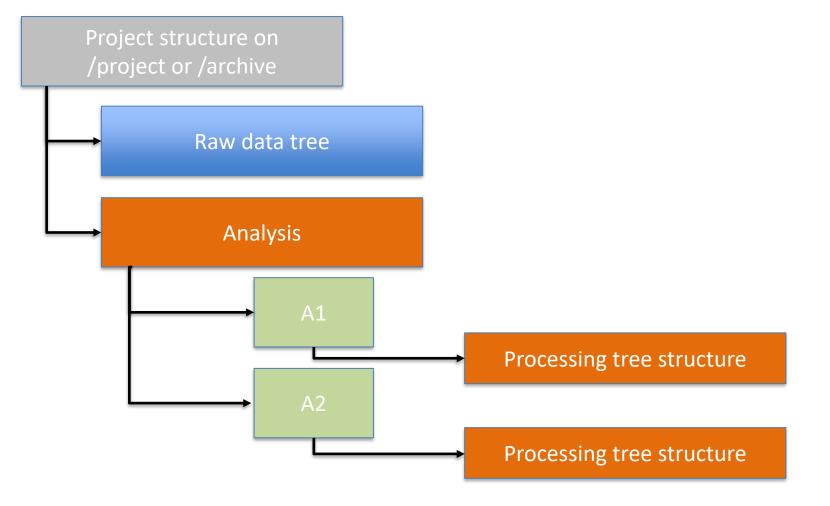
Rule #1 – Separation of raw and processed data

Rule #1 – Separation of raw and processed data

- Set to rw-r--r--
- Each lab member controls personal results
- [Results can be shared between lab members as sub blocks]
- Obsolete processing trees and/or final results can be deleted
- Processing trees/Results of departed lab members can be integrally deleted without affecting raw data or still active processing trees by other users

Scenario with no result sharing between lab members

Project structure on /project or /archive


Processing tree structure on /work

!!!! Deleted with user departure

Rule #1 – Implementation on File System

Scenario with result sharing between lab members and automatic result longevity

Rule #2 – Separation of projects

Project structure on /project or /archive

- Monolithic blocks
 - Move
 - ≻ Zip
 - Delete
 - Symbolic linking
- If needed, lab sub-groups
- Separate documentation
- Usage monitoring
 - Data cleaning

2.0T /project/bioinformatics/Danuser lab/mechanometabolism 1.5T /project/bioinformatics/Danuser lab/P01biosensor /project/bioinformatics/Danuser lab/MultispectralMicroscope 137G 3.9T /project/bioinformatics/Danuser lab/3DTPE /project/bioinformatics/Danuser lab/shared 9.0T /project/bioinformatics/Danuser lab/P01if 14т 151G /project/bioinformatics/Danuser lab/danuser ci 8.6T /project/bioinformatics/Danuser lab/P01adhesion 59T /project/bioinformatics/Danuser lab/3Dmorphogeness /project/bioinformatics/Danuser lab/ActinGrangerCausality 8.7T /project/bioinformatics/Danuser lab/softwarenevelopment 8.0K /project/bioinformatics/Danuser labricroscopeDevelopment 45T /archive/bioinformatics/Danger_lab/zebrafish 64T 3.5T /archive/bioinformatics/Daniser lab/liveCellHistology 2.4T /archive/bioinformatice/baluser lab/lungCancer /archive/bioinform t.cs/Danuser lab/melanoma 125т /archive/biginformatics/Danuser lab/liveCellHistology project 45T /archive/lion formatics/Danuser lab/microscopeDevelopment 1.6Т /archive/bloinformatics/Danuser lab/Ras 20T a chive/bioinformatics/Danuser lab/mechanometabolism 8.0K /archive/bioinformatics/Danuser lab/GEFscreen /archive/bioinformatics/Danuser lab/softwareDevelopment /archive/bioinformatics/Danuser lab/publications 106G6Т /archive/bioinformatics/Danuser lab/3Dmorphogenesis /archive/bioinformatics/Danuser lab/shared 1.7т /archive/bioinformatics/Danuser lab/externBetzig 1.4т 332т /archive/bioinformatics/Danuser lab/Fiolka

Rule #3 – Data and result documentation

Raw

- 1. Maximum: Database for management, e.g. CNERO
 - BUT, ensure direct access via filesystem
- 2. Use file formats with embedded metadata
 - Choose non-proprietary formats
 - Maintain separate data content table, e.g. in an electronic lab notebook (like Lab/archives)

-1

- 3. Maintain separate data content table with metadata information
 - Risk. Inconsistencies due to manual documentation
- 4 Minimum: File naming convention
 - Encode key roeta data in flei arne

Discument convention to separate location like LabArchives

Document metadata in Readme files attached to each file tree leaflet

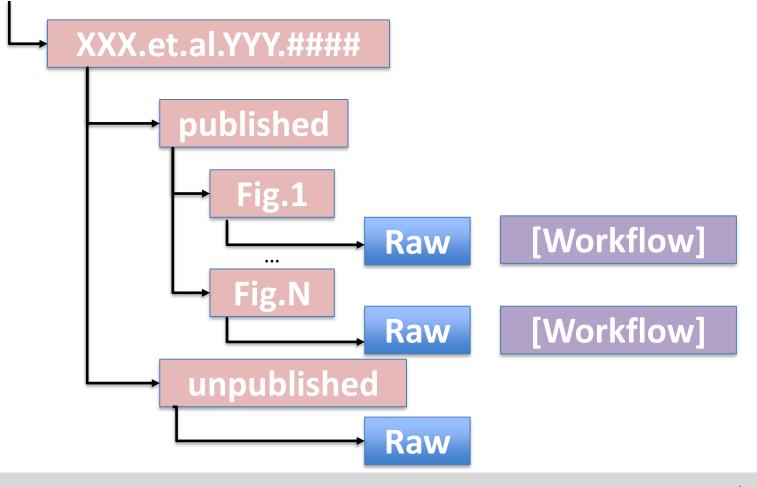
ne

Rule #3 – Data and result documentation

Analysis

- 1. Maximum: Use software with integrated workflow management
- 2. Minimum: Maintain log-files documenting every call
 - You are responsible for the reconstruction of the entire analytical path from raw data to result
 - Software version control and containerization

Meeting publisher's increasingly stricter data sharing requirements


Mandate(s):

- Any raw data feeding into a result figure must be accessible through a repository with a doi
- Standard result data types must be deposited in specialized archives
- [Processing workflows must be documented, with a doi]
- Home-grown software packages must be accessible via Github or even as frozen version with a doi

Tactics for organizing published data

/archive/bioinformatics/Danuser lab/publications

Tactics for organizing published data

- 1. Deposit /published in a public repository for unstructured data
 - Zenodo, Mendeley, …, Texas Data Repository
 - Fetch doi for paper
 - Deposited data constitutes long-term back-up of the high-value portion
- 2. Remove raw data copied into /published and /unpublished from project structure
 - Avoid duplication of old data sets
 - Publication is an implicit documentation of data to next generation lab members

https://dataverse.tdl.org/dataverse/utswmed

https://utsouthwestern.libguides.com/utswrdr

https://utsouthwestern.libguides.com/utswrdr/quick-start-guide

Meeting NIH data sharing requirements

Next 3 slides courtesy of Dr. Joan Conaway

NIH Data Management and Sharing Policy

- What's required?
 - Must submit Data Management and Sharing Plan with application and have it approved by NIH staff.
 - Must comply with Plan.
- What data needs to be shared?
 - All data "commonly accepted as being of sufficient quality to validate and replicate findings."
 - Includes negative results.
- What doesn't need to be shared?
 - Lab notebooks, preliminary data, irreproducible or uninterpretable results, assay optimization...

NIH Data Management and Sharing Policy

- Where does it need to be shared?
 - Ideally: Repository that is searchable, sustainable, has DOIs or accession numbers, supports metadata, free and easy access, allows re-use and citation of data.
- When does it have to be shared?
 - At publication or end of project period (grant close-out).
 - Successful competitive renewal can extend project period.

NIH Data Management and Sharing Policy

- Who is responsible for ensuring compliance with Data Management Plan?
 - Investigator but...
 - Institution is ultimately responsible.
 - Noncompliance may be factored into future funding decisions -

not just for the investigator but for the institution.

Meeting NIH data sharing requirements

My interpretation:

• Meeting publisher mandates will automatically meet NIH requirements, with 2 exceptions:

- Negative results -> dump /unpublished in a separate repository
- Really unpublished results with a grant ending -> who cares?

Rolling out BioHPC's data storage v2.0

Reminder – Status Quo

U	sei	r-ce	nt	ric
U	JCI	-66	; I I U	

Lab-centric

(long-term storage

for research labs)

(will be removed with user departure)

/home2 50G limit Backup 2x/week

/work 50T limit Backup 1x/week

/project

5T limit per PI as default **\$\$\$** Increase per PI request and chair approval No backup (can be requested)

/archive

5T limit per PI as default \$\$\$ Increase per PI request and chair approval No backup (can be requested) similar performance

Storage v2.0

User-centric (will be removed with user departure)	/home2 50G limit Backup 2x/week	/wor 50T limit Backup 1x		1x	
Lab-centric (long-term storage	/project 5T limit per PI as default \$\$\$ Increase per PI request and chair approval No backup (can be requested)			<mark>20x</mark>	
for research labs)	/a 5T limit per PI as de Increase per PI req No backup (can be	uest and chair ap	<mark>\$\$\$</mark> proval	1x	
1 year untouched call on					
	Tap 100 PB capacity for ~30 years data rete		free		

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Storage v2.0 – new storage strategy

- 1. Build lab project structure on /archive
 - All data sharing approaches supported
 - Older data *automatically* transferred to tape robot
 - Identical name space for data on disk and tape
 - Significant storage cost reduction per PI
 - Decent I/O performance for single memory loads
- 2. Move data to /project for compute tasks with intensive, dynamic I/O
 - Temporary copy of raw data from /archive
 - Contained processing trees and results for easy deposition in project structure on /archive

