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Welcome! A quick note before getting started…
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Outline
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• General overview of scientific Python-based workflows
• Numpy and optimizations 
• Numba and optimizations
• JAX and optimizations
• Live Demo



Modern Python Workflows on HPC cluster: Data engineering to data analysis
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Modern Python Workflows on HPC cluster
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• Python performance overview:
• According to the creator of Python, the focus of the language was 

not meant to be fast, but to be expressive and quick to prototype
• Regardless of the original focus of Python, it has become very 

popular in HPC workflows (AI/ML, numerical analysis, etc.)
• So, how exactly Python works in HPC?

• We can achieve high performance by skipping the Python 
layer!



Modern Python Workflows on HPC cluster (cont.)
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A typical Python-based numerical workflow:

Python

NumPy

Intel Math Kernel 
Library (MKL)

Enforces Global Interpreter Lock (GIL)
[Global Interpreter Lock] and is single
threaded.

Gets around the GIL
(multi-thread and multi-core).
BLAS can be bottleneck.

Gets around BLAS API bottleneck.
Fastest performance level
Dispatches to hardware vectorization



Modern Python Workflows on HPC cluster (cont.)
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Different types of Python-based scientific workflows



Modern Python Workflows on HPC cluster: NumPy
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Numerical Python: Provides a data structure called ndarray
• Provides efficient multi-dimensional data structures for storing numerical data
• Provides a large number of functions that do useful things to array 
• Delegates most of the operations on such arrays to optimized, pre-compiled C 

code under the hood. 
• Applies vectorization on certain operations

• A vectorized function is applied simultaneously over many values instead 
of a single value, which is how it looks from the python code (e.g. 
Summation of two matrices or array element-wise multiplication)

def multiply_lists(list_a, list_b):

for i in range(len(list_a)):

list_a[i] * list_b[i]

arr_a = np.array(list_a)

arr_b = np.array(list_b)

def multiply_arrays(arr_a, arr_b):

arr_a * arr_b

Non-vectorized array multiplication Vectorized array multiplication



Modern Python Workflows on HPC cluster: NumPy (contd.)
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Broadcasting in Numpy:
• The term broadcasting describes how NumPy treats arrays with different 

shapes during arithmetic operations. 
• Subject to certain constraints, the smaller array is “broadcast” across the 

larger array so that they have compatible shapes
• In order to broadcast, the size of the trailing axes for both arrays in an 

operation must either be the same size or one of them must be one.

https://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html


Modern Python Workflows on HPC cluster: NumPy (contd.)
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• NumPy doesn’t depend on any other Python packages, however, it does depend 
on an accelerated linear algebra library - typically Intel MKL or OpenBLAS.

• The NumPy wheels on PyPI, which is what pip installs, are built with OpenBLAS.
• In the conda defaults channel, NumPy is built against Intel MKL. MKL is a 

separate package that will be installed in the users' environment when they 
install NumPy.

Intel and BioHPC co-hosted a workshop on March 1st 2022 with the topic of "Intel 
AI Analytics Toolkit“ – If you are interested in the training material (video 
recording + PDF ), then email BioHPC-help@UTSouthwestern.edu



Modern Python Workflows on HPC cluster: NumPy (contd.)
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Parallelization on multiple CPUs with NumPy:
• Many functions in NumPy will try to take advantage of multi-core 

parallelism in your machine. 
• The NumPy library uses multithreading by default.
• If your Python code uses multiprocessing module, you should set these 

four environment variables in your job script:

export OMP_NUM_THREADS=1

export MPI_NUM_THREADS=1

export MKL_NUM_THREADS=1

export OPENBLAS_NUM_THREADS=1

https://docs.python.org/3/library/multiprocessing.html


Modern Python Workflows on HPC cluster: SciPy
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• This is what SciPy provides; built on top of NumPy, it interfaces with a wide 
range of C (and Fortran) libraries to provide a core of essential algorithms in 
scientific computing.

• Some SciPy libraries:
• cluster: hierarchical clustering, vector quantization, K-means
• interpolate: interpolation tools
• linalg: linear algebra routines
• ndimage: various functions for multi-dimensional image processing

• When to use SciPy?
• Always check to see if the algorithm you need exists in SciPy; it will 

probably be faster than your own implementation

https://scipy.org/

https://scipy.org/


Modern Python Workflows on HPC cluster: Numba
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• Numba translates Python functions to optimized machine code at runtime 
(just-in-time compilation) using the industry-standard LLVM compiler library.

• Easy-to-use: No need to replace Python interpreter or make fundamental 
changes to your Python code, just apply one of the Numba decorators to your 
Python function.

• Numba is designed to be used with NumPy arrays and functions.
• Provides several options to parallelize your code either on CPU or GPU.

https://numba.pydata.org/

https://numba.pydata.org/numba-doc/latest/user/installing.html


Modern Python Workflows on HPC cluster: JAX
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• JAX provides a simple and powerful API for writing accelerated 
numerical code.

• JAX provides a NumPy-inspired interface for convenience.
• JAX arrays can often be used as drop-in replacements of NumPy

arrays.
• e.g: numpy.sin(x) <--> jax.numpy.sin(x)

• All JAX operations are implemented in terms of operations in 
XLA – the Accelerated Linear Algebra compiler.

• Using a just-in-time (JIT) compilation decorator, sequences of 
operations can be optimized together and run at once.

• Not all JAX code can be JIT compiled, as it requires array shapes 
to be static & known at compile time.

https://github.com/google/jax

https://github.com/google/jax


Live Demo
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• How to access the code?
Code samples uploaded to 
https://portal.biohpc.swmed.edu/content/training/training-slides-and-handouts/
• Packages used and installation procedure:

• Numpy https://numpy.org/install/
• Numba https://numba.pydata.org/numba-doc/latest/user/installing.html
• JAX https://github.com/google/jax#installation

https://portal.biohpc.swmed.edu/content/training/training-slides-and-handouts/
https://numpy.org/install/
https://numba.pydata.org/numba-doc/latest/user/installing.html
https://github.com/google/jax#installation


Which one to use: Numpy, Numba, or JAX
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• Due to the architectural differences, it is not meaningful to 
compute these techniques.

• JAX is shown to be a promising numerical computing, so give it a 
shot!
• It also support GPU as a backend computation device.  


