
Accelerated Scientific Computing with Python

[web] portal.biohpc.swmed.edu
[email] biohpc-help@utsouthwestern.edu

Welcome! A quick note before getting started…

2

Outline

3

• General overview of scientific Python-based workflows
• Numpy and optimizations
• Numba and optimizations
• JAX and optimizations
• Live Demo

Modern Python Workflows on HPC cluster: Data engineering to data analysis

4

Public
repo

HPC Storage

Database

Extract

Transform

Analytics

Inference

Data acquisition HPC Storage Data processing pipeline

UTSW Core facilities

Data
engineering

Deep
learning

Compute
node

Compute
node

Compute
node

Software Stack

Compute
node

Modern Python Workflows on HPC cluster

5

• Python performance overview:
• According to the creator of Python, the focus of the language was

not meant to be fast, but to be expressive and quick to prototype
• Regardless of the original focus of Python, it has become very

popular in HPC workflows (AI/ML, numerical analysis, etc.)
• So, how exactly Python works in HPC?

• We can achieve high performance by skipping the Python
layer!

Modern Python Workflows on HPC cluster (cont.)

6

A typical Python-based numerical workflow:

Python

NumPy

Intel Math Kernel
Library (MKL)

Enforces Global Interpreter Lock (GIL)
[Global Interpreter Lock] and is single
threaded.

Gets around the GIL
(multi-thread and multi-core).
BLAS can be bottleneck.

Gets around BLAS API bottleneck.
Fastest performance level
Dispatches to hardware vectorization

Modern Python Workflows on HPC cluster (cont.)

7

Python

In Pure Python

Python Python

C Code

Using Python w/
optimized frameworks

C Code

Python as interface

OR OR

Different types of Python-based scientific workflows

Modern Python Workflows on HPC cluster: NumPy

8

Numerical Python: Provides a data structure called ndarray
• Provides efficient multi-dimensional data structures for storing numerical data
• Provides a large number of functions that do useful things to array
• Delegates most of the operations on such arrays to optimized, pre-compiled C

code under the hood.
• Applies vectorization on certain operations

• A vectorized function is applied simultaneously over many values instead
of a single value, which is how it looks from the python code (e.g.
Summation of two matrices or array element-wise multiplication)

def multiply_lists(list_a, list_b):

for i in range(len(list_a)):

list_a[i] * list_b[i]

arr_a = np.array(list_a)

arr_b = np.array(list_b)

def multiply_arrays(arr_a, arr_b):

arr_a * arr_b

Non-vectorized array multiplication Vectorized array multiplication

Modern Python Workflows on HPC cluster: NumPy (contd.)

9

Broadcasting in Numpy:
• The term broadcasting describes how NumPy treats arrays with different

shapes during arithmetic operations.
• Subject to certain constraints, the smaller array is “broadcast” across the

larger array so that they have compatible shapes
• In order to broadcast, the size of the trailing axes for both arrays in an

operation must either be the same size or one of them must be one.

https://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

Modern Python Workflows on HPC cluster: NumPy (contd.)

10

• NumPy doesn’t depend on any other Python packages, however, it does depend
on an accelerated linear algebra library - typically Intel MKL or OpenBLAS.

• The NumPy wheels on PyPI, which is what pip installs, are built with OpenBLAS.
• In the conda defaults channel, NumPy is built against Intel MKL. MKL is a

separate package that will be installed in the users' environment when they
install NumPy.

Intel and BioHPC co-hosted a workshop on March 1st 2022 with the topic of "Intel
AI Analytics Toolkit“ – If you are interested in the training material (video
recording + PDF), then email BioHPC-help@UTSouthwestern.edu

Modern Python Workflows on HPC cluster: NumPy (contd.)

11

Parallelization on multiple CPUs with NumPy:
• Many functions in NumPy will try to take advantage of multi-core

parallelism in your machine.
• The NumPy library uses multithreading by default.
• If your Python code uses multiprocessing module, you should set these

four environment variables in your job script:

export OMP_NUM_THREADS=1

export MPI_NUM_THREADS=1

export MKL_NUM_THREADS=1

export OPENBLAS_NUM_THREADS=1

https://docs.python.org/3/library/multiprocessing.html

Modern Python Workflows on HPC cluster: SciPy

12

• This is what SciPy provides; built on top of NumPy, it interfaces with a wide
range of C (and Fortran) libraries to provide a core of essential algorithms in
scientific computing.

• Some SciPy libraries:
• cluster: hierarchical clustering, vector quantization, K-means
• interpolate: interpolation tools
• linalg: linear algebra routines
• ndimage: various functions for multi-dimensional image processing

• When to use SciPy?
• Always check to see if the algorithm you need exists in SciPy; it will

probably be faster than your own implementation

https://scipy.org/

https://scipy.org/

Modern Python Workflows on HPC cluster: Numba

13

• Numba translates Python functions to optimized machine code at runtime
(just-in-time compilation) using the industry-standard LLVM compiler library.

• Easy-to-use: No need to replace Python interpreter or make fundamental
changes to your Python code, just apply one of the Numba decorators to your
Python function.

• Numba is designed to be used with NumPy arrays and functions.
• Provides several options to parallelize your code either on CPU or GPU.

https://numba.pydata.org/

https://numba.pydata.org/numba-doc/latest/user/installing.html

Modern Python Workflows on HPC cluster: JAX

14

• JAX provides a simple and powerful API for writing accelerated
numerical code.

• JAX provides a NumPy-inspired interface for convenience.
• JAX arrays can often be used as drop-in replacements of NumPy

arrays.
• e.g: numpy.sin(x) <--> jax.numpy.sin(x)

• All JAX operations are implemented in terms of operations in
XLA – the Accelerated Linear Algebra compiler.

• Using a just-in-time (JIT) compilation decorator, sequences of
operations can be optimized together and run at once.

• Not all JAX code can be JIT compiled, as it requires array shapes
to be static & known at compile time.

https://github.com/google/jax

https://github.com/google/jax

Live Demo

15

• How to access the code?
Code samples uploaded to
https://portal.biohpc.swmed.edu/content/training/training-slides-and-handouts/
• Packages used and installation procedure:

• Numpy https://numpy.org/install/
• Numba https://numba.pydata.org/numba-doc/latest/user/installing.html
• JAX https://github.com/google/jax#installation

https://portal.biohpc.swmed.edu/content/training/training-slides-and-handouts/
https://numpy.org/install/
https://numba.pydata.org/numba-doc/latest/user/installing.html
https://github.com/google/jax#installation

Which one to use: Numpy, Numba, or JAX

16

• Due to the architectural differences, it is not meaningful to
compute these techniques.

• JAX is shown to be a promising numerical computing, so give it a
shot!
• It also support GPU as a backend computation device.

