UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

& on BioHPC

[web] portal.biohpc.swmed.edu
[email] biohpc-help@utsouthwestern.edu

Jan 13, 2021

Overview

Running Python on BioHPC

Conda environment

Jupyter Notebook and JupyterLab on Demand

Profiling - measure the Python script execution time
Popular python packages - Numpy, Scipy and Matplotlib

Brief introduction on multiprocessing and MPI

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

I Why Python?

UTSouthwestern :
3 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

I The Scientific Python Stack
o

N or
jupyter == NumPy @SciPy

UTSouthwestern | _.
Medical Center | BIOHPC
Lyda Hill Department of Bioinformatics

Learning Python from Scratch

Hello, World!

Python is a very simple language, and has a very straightforward syntax. It encourages programmers to program without
boilerplate (prepared) code. The simplest directive in Python is the "print" directive - it simply prints out a line (and also includes a

newline, unlike in C)

There are two major Python versions, Python 2 and Python 3. Python 2 and 3 are quite different. This tutorial uses Pythen 3,
because it more semantically correct and supports newer features.

For example, one difference between Python 2 and 3 is the print statement. In Python 2, the "print” statement is not a function,
and therefore it is invoked without parentheses. However, in Python 3, it is a function, and must be invoked with parentheses.

To print a string in Python 3, just write:

script.py IPython Shell O
1 print(*This line will be printed.") 1 [1]:

ms BICF Nanocourses

BICF Nanocourses + | PR -
BICF Python 1 - Nanocourse

Home -
About
Data Science For Biologist > This nanocourse will introduce Python for scientific computing.
MATLAB for Scientific Data Pythan is an open-source, fun, easy 1o learn, and powerful programming language. With deep
Exploration > community support and wide ranging deployment across many domains, Python is a worthy tool
Computational Image Analysis for projects large and small that any computational scientist should keep on hand.
Python for Biologist ~

Python | Topics for this three day (all-day) course will include:

Python i + Basic install, setup
NCBI Workshop >

. = Basic Syntax

NGS Analysis »

« List, Dictionaries, Sets

« Conditional statements, loops, functions
+ 10 and Files

+ Regular Expressions

« Manipulating Numerical data (numpy)

https://www.learnpython.org/

Free, Interactive Python Tutorial
No sign up needed
Great for new programmers

https://bicf.pages.biohpc.swmed.edu

/bicf nanocourses/python 1/

Python Nanocourse for Graduate
students and Postdocs

Registration is needed once available
(Currently not available)

UT Southwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://www.learnpython.org/
https://bicf.pages.biohpc.swmed.edu/bicf_nanocourses/python_1/

I Python 2 vs Python 3

PYTHON 2 PYTHON 3

&— Legacy ° Future —

Library e Library * Python 3.x made backward
incompatible changes.

0000 e Python 2 support officially
oo ASCll e Unicode 2929 stopped January 1 2020.

0001
e Python 3 is recommended for

new development.

® 5/2=2 9 5/2=25 (=)

print “hello” e print (“hello”)

Python 2 vs Python 3: Which Should | Learn?

UTSouthwestern :
6 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://learntocodewith.me/programming/python/python-2-vs-python-3/

Run Python on BioHPC

Python 2.7 by default comes with RHEL 7 on BioHPC nodes

[s123456@Nucleus006 ~]S$ python
Python 2.7.5 (default, Jun 11 2019, 14:33:56)

[GCC4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

More Python versions can be load from S module

[s123456@Nucleus006 ~]S module avail python

/cm/shared/modulefiles
python/2.7.14-anaconda python/3.4.x-anaconda

python/2.7.3-epd python/3.6.1-2-anaconda
python/2.7.5 python/3.6.4-anaconda
python/2.7.6-epd python/3.7.x-anaconda
python/2.7 x-anaconda

python/3.3.2

UTSouthwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Challenge in Python

Dependency Hell

Affects all modern languages, especially
interpreted ones.

Python especially challenging:

Huge number of 3™ party packages

Rapidly changing APIs

Scientific packages need non-python
dependencies.

Solutions - Conda / virtualenv etc...

UTSouthwestern .
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Conda environment

CONDA

Conda is a package manager, also serve as environment manager, allows you to have multiple

Dependencies

isolated environment for different projects on a single machine

o Project A: Python 2.7 and Biopython 1.60

o Project B: Python 3.5 and Biopython 1.68
Anaconda distribution: popular python/R data science platform, a collection of 7500+ packages
The newly created environment will be installed in the directory

/home2/<username>/.conda/envs

Ref to https://portal.biohpc.swmed.edu/content/guides/conda-biohpc

UT Southwestern .
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://portal.biohpc.swmed.edu/content/guides/conda-biohpc

10

Anaconda — Default Environment

S module load python/3.7.x-anaconda

291 packages, including full scientific python stack

$ conda list

Web Visualization — for software need GUI

Spyder scientific development environment

$ S pyd er * JUPYter Untitled Last Gheckpoint: 5 minutes ago (unsaved changes)

FHEE

Jupyter Notebook on Demand
https://portal.biohpc.swmed.edu/terminal/onde
mand jupyter/

JupyterLab on Demand
https://portal.biohpc.swmed.edu/terminal/onde
mand_jupyterlab/

** training on Jupyter Notebook is on 5/19/2021

@ B 4+ ¥ N B C Code 4 @ Celoolbar

Simple Equation
Let u:

s now implement the following equation:

Jupyter Notebook

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://portal.biohpc.swmed.edu/terminal/ondemand_jupyter/
https://portal.biohpc.swmed.edu/terminal/ondemand_jupyterlab/

Conda - install miniconda

* Anaconda Not recommended
Hundreds of scientific packages automatically installed at once
Too many small files, and 4G space

* Miniconda Recommended
Python, conda and some essential packages, 350M space

Download miniconda script
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-
x86_64.sh

Run script
bash Miniconda3-latest-Linux-x86 64.sh
Follow prompts, accept license (yes)

Specify install location if needed
initialize Miniconda3 (no)

Activate environment

conda activate /home2/<username>/miniconda3
check all installed packages

conda list

https://docs.conda.io/en/latest/miniconda.html UTSouthwestern .
1 s:// s / Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://docs.conda.io/en/latest/miniconda.html

Conda - Create Your Own Environment

The main module installation must be stable
We won’t update packages in it frequently.

The conda tool lets you create your own environments with versions you need
Stored in SHOME/.conda SHOME 50G space

Create a new environment with package biopython
conda create -n testl biopython

See information about environments available
conda info -e

Start using this environment*
conda activate testl

Back to default environment*
conda deactivate

Create a new environment to a different directory
conda create --prefix /project/<dept>/<lab>/<user>/test3 biopython

UT Southwestern :
12 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Conda - Create Your Own Environment

Create a minimal environment with specific python and numpy
Won't install all of the conda package set
conda create -n test2 python=3.6.4 numpy=1.16

Start using the environment
conda activate test2

Add more package rpy2 to this active environment
conda install rpy2

Update the numpy package to the latest version
conda update numpy

Install a non-conda package using pip
conda search planemo

conda install pip

pip install planemo

More user guide:
Managing environments — conda 4.9.2 documentation

UT Southwestern :
Medical Cente.r_' BioHPC

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#removing-an-environment

Issue of conda environments

* Too many small files!
anaconda: ~165,000 files, 4G. Do NOT install anaconda
test2 (python and numpy only): ~15,000 files on BioHPC
e 165,000 files * ~ 1,000 biohpc users = 165,000,000 files.
* Pressure on BioHPC storage system

Solutions:
a) Create shared conda environment to lab shared directories.
» All users can read/write. Be careful! Any user can update the lab packages
e Only specific user can change it. An admin to maintain lab conda env
b) Popular python package as BioHPC module. Request BioHPC team to install.
c) BioHPC is going to provide an option to use Singularity containers with overlay
filesystem for conda.

Always consult with BioHPC first if want to install large conda environment, set up lab
conda environment
Send email to biohpc-help@utsouthwestern.edu

UTSouthwestern :
14 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

15

Challenge in Python

Python is slooooooow.....

Trades execution speed for development
speed.

Solution: Move critical portions closer to
machine code.

* Directly call C code - Cython

* Use modules built on optimized,
compiled code.
e.g. NumPy builds on BLAS / LAPACK

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

16

I Profiling — method calls profiling.py

python -m cProfile [-o output_file] [-s sort_order] script.py

Hello world

examples/1_intro/profiling.py 2800000.0
1400008 function calls in 0.391 seconds
1 from math import sqrt Ordered by: standard name
2
3 def hello(): ncalls tottime percall cumtime percall
4 print "Hello world" filename:lineno(function)
5 1 0.002 0.002 0.391 0.391 prof.py:1(<module>)
6 def mysum(): 1 0.105 0.105 0.389 0.389 prof.py:12(vector)
7 for 1 in range (100000): 699999 0.061 0.000 0.0861 0.000 prof.py:18(<lambda>)
8 a =1 1 0.000 0.000 0.000 0.000 prof.py:3(hello)
9 b =1 1 0.000 0.000 0.001 0.001 prof.py:6(sum)
10 c = a+b 700000 0.038 0.000 0.038 0.000 {math.sqrt}
11 1 0.089 0.089 0.089 0.089 {method ’sort’}
12 def wvector(): 1 0.000 0.000 0.000 0.000 {range}
13 a=10[1., 2., 3., 4., 5., 1 0.095 0.095 0.156 0.156 {reduce}
6., 7.1%1000000
14 for i in a:
15 t = sqrt(i**2)
16 r = a.reverse ()
17 s = a.sort ()
18 print reduce(lambda x, y:
x +y, a)
19
20 if __name__==’__main__"’:
21 hello ()
22 mysum ()
23 vector ()
o
UTSouthwestern | _.
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Profiling — line by line test_profl.py

In a custom environment install module:

$ conda install line_ profiler

Add @profile decorator to functions in code that you want to profile

Run the profiler:

$ kernprof -1 -v test profl.py

Timer unit: 1le-86 s

Total time: 46.5612 s

File: test_profil.py
Function: function at line 2

@profile
unction(arg):
. . res = []
20060001 18025789 . 3. i in range(-10000000, 10000000):
20000000 28535428 . . res.append(math.sqrt(abs(i+1)*arg**5))
1 4 . . res

%
3
4
5
6
-

UTSouthwestern

17 Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

NumPy

NumPy performs (multi-dimensional) array arithmetic much faster than native
python objects, by using low-level contiguous arrays and compiled libraries:

In [1]: import numpy as np

In [2]: list = range(100008)
In [3]: %timeit [1 **2 for 1 in list] # Time execution
24.4 ms + 66.2 ps per loop (mean * std. dev. of 7 runs, 10 loops each) -.\\

In [4]: array = np.arange(100000)) 300 x faster
In [5]: %timeit array **2 # Time execution
80.7 ps + 65.7 ns per loop (mean * std. dev. of 7 runs, 10000 loops each)

The Linear Algebra module of NumPy offers various methods to apply linear algebra
on any Numpy array.

In [1]: import numpy as np

In [2]: a = [[1, @], [@, 1]]
In [3]: b = [[4, 2], [3, 2]]

In [4]: np.dot(a,b)
Out[4]:
array([[4, 2],

[3, 211)

UT Southwestern .
18 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

NumPy

Create array and manipulation

In [1]: import numpy as np

Out[2]:
array([[1.,

In [3]: np.zeros((3,2))
Out[3]:
array([[0., 0.],

6., 0.1,

[6., 8.1])

In [4]: np.random.random((3,2))

Out[4]:

array([[©.7998307 , ©.56285574],
[0.85627569, ©.37977093],

198454]1]1) # may

https://numpy.org/learn/

19

UTSouthwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

https://numpy.org/learn/

I More popular packages

Packages Imported by Machine
Learning Projects on GitHub

1 numpy 74%
2 scipy 47 %
3 pandas 41+
4 matplotlib 40%
5 scikit-learn 38%
6 six 31%
/ tensorflow 24+
8 requests 23%
9 python-dateutil 224
10 pytz 21%

Image Credit: GitHub

UT Southwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

20

SciPy & Matplotlib Bessel _2021.py

H import matplotlib.pyplot as plt

Eiwaort numpy as np]

f from mpl_toolkits.mplot3d import Axes3D - # comes your
i From matplotlib import cm . .

H import scipy as sp Imports
Eirow scipy.special import jn, jn_zeros

drumhead_hen:ght(n, k, distance, angle, : # User defined
nth_zero = jn_zeros(n, k) i
1 np.cos(t) * np.cos(n * angle) * jn(n, distance * nth_zero) fLHWCtKJH(S)

ftheta = np.r_[0:2 * sp.pi:50]]
fradius = sp.r _[0:1:587]
: np.array([r * np.cos(theta) for r in radius])
np.array([r * np.sin(theta) for r in radius])

Hz = np.array([drumhead height(1, 1, r, theta, 8.5) for r in radius])
iT1g = plt.tigure(rigsize=(b, 0))
: = Axes3D(fig)

.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.jet)

.set_xlabel('x") : . . .
Eax.zet_zlabel('z')]
J# plt.show()
iplt.savefig("bassel.png’, dpi=300,bbox_inches="tight")

. # calculation

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

I SciPy & Matplotlib

0:75 =
1.00 1.00

UT Southwestern :
22 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

I Serial Computing and Parallel Computing

problem

instructions

do_payroll()

Serial Computing

h

instructions

empl_deduc
empl_deduc
empi_deduc

emp1_rate

= =
1] 1]
w w
L L
il il
e =
< =
3 3
@ @

empd_hrs
emp_hrs
emp1_tax

iN

@
B

Introduction to Parallel Computing Tutorial | High Performance Computing (lInl.gov)

UT Southwestern :
23 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

I Serial Computing and Parallel Computing

problem instructions

do_payroll{emp1)

instruc2
instruc1

BENENR

do_payroll{emp2)

instruc2
instruci

do_payroll{emp3)

L] -
(5] (=]
= =
= =
[11} [75)
= =

do_payroll{empN)

instruc2
instruc1

N t3 2

Parallel Computing:
Breaking a problem into multiple pieces and processing each piece
in parallel through multiple processors

UT Southwestern :
24 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

I Multi-Threading vs. Multi-Processing

25

/ Application/Program/Process \

Multi-Threading

Multi-processing

UTSouthwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

I Challenge in Python

Global Interpreter Lock

Thread A Thread B

Time

item=a.pop

Can create many threads, but only runs 1 thread at a time.

Solution — multiple processes

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

26

Parallel Python Computing on BioHPC

* BioHPCs employ often 2-4 server-grade CPUs per node
* 8—16 processor cores per CPU
* Shared memory on each node for all processors

* Distributed memory architecture
* Nodes are connected via a high-speed network
* Memory is shared between nodes through some API
* MPIlis most commonly used

UTSouthwestern

Medical Center

Lyda Hill Department of Bioinformatics

27

BioHPC

Multiprocessing — Direct Creation & Management myltiproc_test 2021.py

rt multiprocessing
f list_append(count, out_list):

er to the List 'count' number
. A CPU-heavy operation!

print (os.getpid(), 'is working')
for 1 in range(count):
out_list.append(random.random())

if _ name " main_":
size = 1
procs = 4

or i in range(@, procs):
out_list = list()
process = multipﬁocessing.PPocess(#?Pgetf}ist_éppenéi B ()lJtF)Ut[]Z
args=(size, out list))

process_list.append(process) 57526 is working
- : 57527 is working
1 [T 57532 is working
.start() i i
57545 is working
List processing complete.

p.joi

print

UTSouthwestern :
28 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

l MPI

A interface for parallel computation using message passing between processes

Small set of instructions, but quite complicate to use

2600060 6006
L/ \ /
./ \o /

broadcast

0006 2000
N\ N
E oh

gather reduction

UT Southwestern

29

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Mpi4py — MPI wrappers for python Hello_mpi_2021.py

Install the module

(test2)[] $ conda install mpidpy

from mpidpy import MPI

rt socket
comm = MPI.COMM WORLD

print ("Hello! I'm rank %02d from %02d on host %s" % (comm.rank, comm.size, socket.gethostname()))

Run the code

(test2)[] $ mpirun -n 4 python hello mpi 2021.py

Hello! rank 03 from 04 on host NucleusAl40

Hello! rank 00 from 04 on host NucleusAl40
Hello! rank 01 from 04 on host NucleusA1l40
Hello! rank 02 from 04 on host NucleusA1l40

https://mpidpy.readthedocs.io/en/stable/tutorial.html

UTSouthwestern :
30 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

https://mpi4py.readthedocs.io/en/stable/tutorial.html

mpi4py — Communication of python objects P2p_2021.py

mpid4py import MPI

comm = MPI.COMM WORLD
t comm.size == 2

comm.rank == 0:

sendmsg = 123

comm.send(sendmsg, dest=1, tag=11)

recvmsg = comm.recv(source=1, tag=22)

print ("[%02d] Recelved message: %s" % (comm.rank, recvmsg))

recvmsg = comm.recv(source=0, tag=11)

print ("[%02d] Received message: %d" % (comm.rank, recvmsg))
sendmsg

comm.send(sendmsg, dest=0, tag=22)

(test2) [] $ mpirun -n 2 python p2p.py

[01] Received message: 123
[00] Received message: Message from 1

SLOW! — Python objects must be serialized & deserialized.

UTSouthwestern :
31 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

mpi4py — Communication of numpy arrays p2p_numpy_2021.py

mp1d4py 1 t MPI
numpy

MPI.COMM WORLD
comm.size == 2

rank comm. rank

: axplicit MPI
f rank == 0:
data = numpy.arange(10, dtype='1")
comm.Send([data, MPI.INT], dest=1, tag=77)
1f rank ==
data = numpy.empty(10, dtype='1")
comm.Recv([data, MPI.INT], source=0, tag=77)
print ("[%02d] Received: %s" % (rank, data))
. omati PI pe | ,
f rank ==
data = numpy.arange(10, dtype=numpy.float64)
comm.Send(data, dest=1, tag=13)
1f rank == 1:
data = numpy.empty(10, dtype=numpy.float64)
comm.Recv(data, source=0, tag=13)
print ("[%02d] Received: %s5" % (rank, data))

(test2) [1% mpirun -n 2 python p2p numpy 2021.py
[01] Received: [0 1 2 3 456 7 8 9]
[01] Received: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

Faster — numpy arrays can be sent / received directly by the MPI layer

UTSouthwestern :
32 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

NumPy — Linear Algebra matrix_vector_2021.py

System modul
import numpy as

np.set printoptions(precision=3)

def mat_vec():
Read in Column Vector; Store in x
vector filename = "my vector.txt"

np.loadtxt(vector filename, ndmin=2)
print ("x is: \n", x)

d in Square Matrix; Store in A
np.loadtxt to read
in contents of "my matrix.txt"

matrix filename = "my matrix. txt”
A = np.loadtxt(matrix filename, ndmin=2)

print ("A is: \n", A)

=
=oes s

[y
e I e I o I w7 (R e [7 7w Y w7 [

e Pl
P EE R EE 9.
SEEEEIRER Pl
SeEEEPeR 9.
SEENERPRER Pl
SeREEPeR 9.
SreEERPeER Fl

Compute "b = A * x" using np.dot(A, x)
b = np.dot(A, x)

print ("b is: \n",b)

Write b to file

result filename = "my result.txt"
np.savetxt(result filename, b)

return A, x, b

I

noDDODe DD ®

T
[T o I o T T T e T o o Y

=

name_ == " main_ ":

Run Function mat_wvec
, X, b = mat_wvec()

(== I= R S W I % I
= B O oW oo s
L] b b bed b b bed

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

34

Multiprocessing — Using a process pool

time
multiprocessing

f():

start = time.time()

time.sleep(2)

end = time.time()
end - start

p = Pool(processes=1)

result = p.apply(f) #
orint ("apply is blocking")

, re5a1f}

o o

otal time

result
print (

= p.apply async(f)

non-blocking™)

apply async 1s

] result.ready():
time.sleep(0.5)

on whatever

result.get()) #

else I want...'

apply_test 2021.py

Output([]:

apply is blocking

total time 2.0020883083343506
apply_async is non-blocking
working on whatever else | want...
working on whatever else | want...
working on whatever else | want...
working on whatever else | want...
total time 2.0020806789398193

UTSouthwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Multiprocessing — Map on an iterable object map_test_2021.py

- time
multiprocessing

f(x):
eturn x**3

range(int(1e7))

Pool(processes=4)

start = time.time()
results = p.map(f, y)
end = time.time()
print ("map blocks")

print (“time", end - start)

start = fime.time() Output([]:
results = p.map_async(f, y) # | K1ng map blocks
end = time.time() time 1.9243769645690918

print ("map _async is non-blocking")) _
output = results.get() ; : _ kina map_async is non-blocking
print ("time", end - start) time 0.1760871410369873

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

36

Multiprocessing - Shared Data using a Manager multiproc_manager 2021.py

multiprocessing :
0s

Manager, Pool

lef f(1, d):
L.append('worker")
dlstr(os.getpid())] = 'worker'
manager = Manager()
pool = Pool(2)

private 1
private d

manager.llst()
manager.dict()

shared 1
shared d

private l.append('manager")
private dlstr(os.getpid())] =

shared l.append('manager
shared dlstr(os.getpid())] = 'manager

pool.apply(f, args=(private 1, private d))
pool.apply(f, args=(private 1, private d))
print (“try to add to private data", private 1, private d)

pool.apply(f, args=(shared 1, shared d))
pool.apply(f, args=(shared 1, shared d))

Output(]:

try to add to private data ['manager'] {'56636'":

'manager'}

try to add to shared data ['manager’, 'worker',

‘worker'] {'56636': 'manager’, '58800': 'worker",
'58802'": 'worker'}

print (“try to add to shared data", shared 1, shared d)

UTSouthwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

1| Codes availibility

) https://portal biohpc.swmed.edu/content/training/training-slides/
UT Southwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Home News = About~ Status = Guides = FAQs Cloud Services =

Training =

™ Comment on this page
A Logged in as: 179389 -

BioHPC OnDemand = Software = Careers=

Slides & Handouts

Slides and handouts for past training sessions will be posted here

Wednesday January 6 2021 - Introduction to BioHPC

newlUserTraining_1_6_2021 pdf (3.4 MB)

Wednesday December 9 2020 - Introduction to Git

20201209 _gitintro.pdf (1.7 MB)

Wednesday December 2 2020 - Introduction to BioHPC

20201202_newUserTraining.pdf (3.3 MB)

Wednesday October 14 2020 - Cloud Storage on BioHPC

biohpc_storage_training_10142020.pdf (1.3 MB)

https://portal.biohpc.swmed.edu/content/training /training-slides/

UTSouthwestern

37

BioHPC

Medical Center

Lyda Hill Department of Bioinformatics

https://portal.biohpc.swmed.edu/content/training/training-slides/

UTSouthwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Thanks!

