
Introduction to Git and GitLab

1
November 9, 2022

[web] portal.biohpc.swmed.edu

[email] biohpc-help@utsouthwestern.edu

Agenda

2

• Why do we need Git?

• What is Git?

• Git Basics – using it locally

• Git Basics – using remotes

• GitLab

• SSH keys

• GitLab Projects

• Organize changes and revisions in a meaningful way!

• Large codebases, scientific software…

• Many collaborators

• Many versions, bugfixes…

• A VCS is not a backup system.

• Often not optimized for large files

Why do we need version control systems (VCS-es)?

3

•Git is a distributed version control system.

• Invented by Linus Torvalds (the Linux guy) in 2005

•Version Control System – track changes in a code-base

•Distributed – no one ‘golden repo’

•As opposed to centralized (e.g. SVN)

What is Git?

4

Git – basic terminology

5

Git is a version control system, designed to track changes to your codebase.
• A git repository is a collection of code, tracked by git.
• A git commit is a set of changes, applied to some previous repository state, that

updates the repository to some new state.
• A given commit is referred to by its commit ID

• A git push is an action that migrates those changes to some other repository (e.g.
Gitlab)

• A git branch is a series of related commits distinct from other branches.
• A git merge is a process of bringing changes from one branch to your current

one.
• A git tag is a ‘special name’ given to a particular commit – stored in the ref-log

commit ef98cdfe4d8976013c9002cf60f79677fac812ee

Author: user_name <User.Name@UTSouthwestern.edu>

Date: Tue Nov 8 09:27:55 2022 -0600

New alphabet reference file

…some code…
thisVar = 5;
thatVar =
oldFunction(thisVar);

…some code…
thisVar = 5;
thatVar =
newFunction(thisVar);

…some code…
thisVar = 7;
thatVar =
oldFunction(thisVar);

…some code…
thisVar = 7;
thatVar =
newFunction(thisVar);

Git as a graph of ‘repository states’

“initial commit”

Git repository

Staging Area / Index

+zyx.txt

The three areas of your local Git environment

7

Working Tree

my_test_project

.gitabc.txt

.

.gitabc.txt

zyx.txt

zyx.txt

commit 09ab2ef…
“added reversed alphabet”

+ zyx.txtgit add zyx.txt

git commit

Files on disk – what
file explorer sees Building up commits

The ‘record’

Staging Area / Index

+zyx.txt

The three areas of your local Git environment – adding to the index

8

Working Tree

my_test_project

.gitabc.txt

.

.gitabc.txt

zyx.txt

zyx.txt
git add zyx.txt

Files on disk – what
file explorer sees Building up commits

The Staging Area is where you
build up a commit – you can add
and remove files, eventually
building up a ‘change unit’ called
a commit.

When you save a file,
you are saving it to
your filesystem. Git

sees this as the
‘working tree’.

Git repository

Staging Area / Index

+zyx.txt

The three areas of your local Git environment – Committing your commits

9

.

.gitabc.txt zyx.txt

commit 09ab2ef…
“added reversed alphabet”

+ zyx.txt

git commit

git commit ‘seals and stamps’ your
staged changes, entering them
(along with a commit message) to
the repository. At this point, the
commit is in the record.
- commit ID entered in the reflog

You can now build up another
commit in the staging area (e.g. a
different function you’ve
implemented), or sync with an
external repository.

git config

10

• Before using git, you may want to set a few configuration variables.
• git may prompt you to do this on your first push.

• Most if not all have both local and global options
• local is for the currently active repo
• global is system-wide

$ git config --global user.name your_username

$ git config --global user.email your.email@utsouthwestern.edu

$ git config --local user.email your.other.email@gmail.com

• There are many options – you might have to use a few depending on your needs.

mailto:your.email@utsouthwestern.edu
mailto:your.other.email@gmail.com

git init – creating a repository

11

my_user@my_host:sandbox$ git init my_test_project

Initialized empty Git repository in /home/sandbox/my_test_project/.git/

my_user@my_host:sandbox$ ls

my_test_project

my_user@my_host:sandbox$ ls my_test_project/ -a

. .. .git

> sandbox
local repo

sandbox

my_test_project

.git

>

git status – checking on your git workspace

12

my_user@my_host:my_test_project (master)$ git status

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

local repomy_test_project

.git???

Nothing in the
working tree →
nothing to
commit!

git status – Git only tracks what you’ve told it to.

13

my_user@my_host:my_test_project (master)$ echo "abcdefghijklmnopqrstuvwyz" > abc.txt

my_user@my_host:my_test_project (master)$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

abc.txt

nothing added to commit but untracked files present (use "git add" to track)

local repomy_test_project

.gitabc.txt

Files not already
added to git repository
= untracked

git add – telling Git what to track

14

my_user@my_host:my_test_project (master)$ git add abc.txt

my_user@my_host:my_test_project (master)$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: abc.txt

#

local repomy_test_project

.gitabc.txt

git add makes the
untracked file part of
the next commit

git commit – entering changes into the repository

15

my_user@my_host:my_test_project (master)$ git commit -m "New alphabet reference

file"

[master (root-commit) ef98cdf] New alphabet reference file

1 file changed, 1 insertion(+)

create mode 100644 abc.txt

my_user@my_host:my_test_project (master)$ git status

On branch master

nothing to commit, working directory clean

local repomy_test_project

.gitabc.txt

git commit ‘zips up’
the commits, tacks on
the message,
generates ID, and
updates local repo.

ef98cdf

git status – Git naturally looks at differences.

16

my_user@my_host:my_test_project (master)$ echo "abcdefghijklmnopqrstuvwxyz" >

abc.txt

my_user@my_host:my_test_project (master)$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: abc.txt

#

no changes added to commit (use "git add" and/or "git commit -a")

local repomy_test_project

.gitabc.txt
git is aware of changes
in tracked files

git diff – comparing different files from different commits

17

git diff <commit> <commit>

git diff alone will compare the working directory with HEAD

git diff –staged will compare the staging area with HEAD

git diff <filename> will restrict comparison to a specific file.

local repomy_test_project

.gitabc.txt

git commit ‘zips up’
the commits, tacks on
the message,
generates ID, and
updates local repo.

ef98cdf 79eb3ed

git diff will compare LINE-BY-LINE

18

$ git diff

diff --git a/abc.txt b/abc.txt

index 0ce81d4..b0883f3 100644

--- a/abc.txt

+++ b/abc.txt

@@ -1 +1 @@

-abcdefghijklmnopqrstuvwyz

+abcdefghijklmnopqrstuvwxyz

$ git diff abc.txt

diff --git a/abc.txt b/abc.txt

index 0ce81d4..b0883f3 100644

--- a/abc.txt

+++ b/abc.txt

@@ -1 +1 @@

-abcdefghijklmnopqrstuvwyz

+abcdefghijklmnopqrstuvwxyz

Moving and renaming files – why not to use mv

19

$ mv abc.txt xyz.txt

$ git status

On branch master

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: abc.txt

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

xyz.txt

no changes added to commit (use "git add" and/or "git commit -a")

$ mv xyz.txt abc.txt

$ git status

On branch master

nothing to commit, working directory clean

Moving and renaming files – why to use git mv

20

$ git mv abc.txt xyz.txt

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: abc.txt -> xyz.txt

#

$ ls

xyz.txt

Git looking at differences – the commit log

21

$ git add abc.txt

$ git commit -m "Added x"

[master 79eb3ed] Added x

1 file changed, 1 insertion(+), 1 deletion(-)

my_user@my_host:my_test_project (master)$ git log

commit 79eb3ed033f6239ffb41c25e389c5000655a5463

Author: user_name <User.Name@UTSouthwestern.edu>

Date: Tue Nov 8 09:34:26 2022 -0600

Added x

commit ef98cdfe4d8976013c9002cf60f79677fac812ee

Author: user_name <User.Name@UTSouthwestern.edu>

Date: Tue Nov 8 09:27:55 2022 -0600

New alphabet reference file

• HEAD is shorthand for ‘the commit in the repository from which your current working tree was derived’

• Points to the last commit that you made, or to the last commit that was checked out.

• Branching creates a new named ref – the next commit will be on this branch!

Branching, commits, and HEAD

22

your repo your repo
master master

my_feature

new commits now on
my_feature

This can be very confusing!
Check out https://jwiegley.github.io/git-from-the-bottom-up for a good explanation

https://jwiegley.github.io/git-from-the-bottom-up

• Branches are the most important part of having a well-organized codebase that many people can work on.

$ git branch my_feature && git checkout my_feature

OR

$ git checkout -b my_feature

git branch – creating parallel timelines

23

your repo your repo
master master

my_feature

new commits now on
my_feature

• Separate branches → Separate features

• Must be careful to keep things independent, otherwise you run into the dreaded merge conflict!

Branches allow parallel workflows

24

your repo
master

my_feature

your repo
master

my_feature

+zyx.txt
PARAM=0.01

+zyx.txt
PARAM=0.02

Merging branches ‘finishes’ one branch by bringing its history of changes into another.

25

your repo

+abc.txt
PARAM=‘abc’

+zyx.txt
PARAM=0.02

• Independent changes (i.e. those which generate no merge conflicts) are automatically combined.

• A special ‘merge commit’ is generated for this process.

Merge conflicts arise because of incompatible changes from different branches.

26

your repo

+zyx.txt
PARAM=0.01

+zyx.txt
PARAM=0.02

(master)$ git merge my_feature

Auto-merging abc.txt

CONFLICT (content): Merge conflict in abc.txt

Automatic merge failed; fix conflicts and then commit the result.

(master|MERGING)$ cat zyx.txt

<<<<<<< HEAD

PARAM=0.01

=======

PARAM=0.02

>>>>>>> my_feature

(master|MERGING)$ echo “PARAM=0.015” > zyx.txt

(master|MERGING)$ git add zyx.txt

(master|MERGING)$ git commit –m “Averaged PARAM”

(master)$

• Three local areas – the working tree, the staging area or index, and the repository.

• Commits are assembled in the staging area and committed to the repository along with a descriptive message.

• Each has a checksum which functions as its unique name

• HEAD refers to the commit that your current working tree is derived from.

• Branches are parallel series of commits – they are split off with git branch and combined with git merge.

• the branch-ref points at the most recent commit in the repository for each branch

• committing to a branch updates the branch-ref to point at your new commit.

• Merge conflicts arise in cases where Git cannot sensibly combine your changes.

• Adds another ‘mini commit’ into the process specifically to allow you to manually intervene.

Recap – Local Git

27

• Git is useful as a version tracking tool for your own purposes, but it shines when used to share code.

• Your local repository can be configured to use multiple remotes

• Usually the name origin is chosen for the ‘original’ remote repo.

• Multiple remotes can be added for different purposes!

• Pull base code from one server, clean up and push to another.

Using remote repositories

28

origin_base

local repo
sandbox

my_test_project

.gitabc.txt origin_dev

GitHub

BioHPC GitLab

Git – local and remote cheat sheet

29

working
tree

staging
area

local
repo

remote
repo

git add

git commit
git rm

git commit -a

git reset

git reset <commit>

git diff

git diff <commit>

git clone <commit>

git fetch

git merge

git push <ref> <remote>

git pull = git fetch + git merge

• BioHPC-hosted service which provides a repository hosting service, along with:

• Web IDE

• Project wikis

• Markdown, plus additional flavor for GitLab specifically.

• Group organization

• CI Runner integration

• Future trainings will focus more on GitLab’s features

GitLab – git.biohpc.swmed.edu

30

• To use GitLab correctly, you must add an SSH public key to your profile.

• You CANNOT push via basic password authentication as our GitLab is two-factor enabled.

• HTTPS repository links will generally not function correctly.

• HTTPS tokens were made having logged in, so they are already ‘authenticated’

•Recommended that you use a GitLab-specific SSH key.

•Public keys are meant to be shown, but you can never be too careful!

SSH Keys

31

https://git.biohpc.swmed.edu/-/profile/keys

Generating a key pair (should generally keep separate key pairs for separate computers)

32

$ ssh-keygen -b 4096

Generating public/private rsa key pair.

Enter file in which to save the key (/home/.ssh/id_rsa): /home/fakekeypair

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/fakekeypair.

Your public key has been saved in /home/fakekeypair.pub.

The key fingerprint is:

SHA256:55oP837kOBwUul80K811S2+erwGW5HZEKt8U myusername@my_host

The key's randomart image is:

+---[RSA 4096]----+

| ..+. o.+|

| =o oo+=|

| . ++.+E+|

| . . =o=oo|

| ..|

| .oo = o o|

| oo.O . o |

| *= + . |

| oo+o . |

+----[SHA256]-----+

NEVER EVER SHARE THIS ONE.

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQC1QUpBAwXo+13PSbMBQHuSc3jYfZFTn3K8mggecfBDir5SoQ
g6vNmji4/7bvQoQOgJs2wT7SKuigG2WAQUZDKuf/drXts8Mc1yZJJIYBlUXVM6N24IT3V+HpD4kX/BJ0PP
xs4TLb+++Fgs6Jv+nS4VwWxxhvA9fgpKHzEctZqGX/zdNU3H5pWF/yrrGkuPp0SflE4rnHbg1ga0Ci6O2g0sr
UVUCXzC7qvMa0IHc8NpE+GtPMkbjaWAOotlP6V0UZf6ycswo8GyeLwJ602ARej9HsMmg1bp2EYKksMS
CGmdi5wa8Yip9ZlnP5XpFQ4POupmdPBupV2bXTEzKMGbt4oY/XKPPURCYJtRNVJ4Y5r7zhXTsofYBrzdG7
cT8kugkG22I8wkkaCFX+tq3piqMLLJ8K2JDwdUK7UlSmtNA6/Ir1xH+kZFa4Wq2acmDs11UiSofbPboDbQt
6PMWTuhkMF877Cg5hp+5HQwoFMjQVAsGeiYwDml3AOGv1TTRjF6qt9C489tVh+MG3JB6R4CoFwkz+O
CphdZP62JPrjx+8i0PEBFPfL7CiFE9hFAl9CQJPCjRz/IoXiBrrawAcxPrehDsYGIw== myusername@my_host

Adding your SSH key to your GitLab profile.

33

https://git.biohpc.swmed.edu/help/ssh/index.md

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQC1QUpBAwXo+13PSbMBQHuSc3jYfZFTn3K8mggec
fBDir5SoQg6vNmji4/7bvQoQOgJs2wT7SKuigG2WAQUZDKuf/drXts8Mc1yZJJIYBlUXVM6N24
IT3V+HpD4kX/BJ0PPxs4TLb+jKb89SNXOBYN20D1QRDprQ+BEzFASdp2/xByUfjWtKcZcqcxlNh
IjTD4kzQI8uayh2n5aB6JcKhVLOtNv++Fgs6Jv+nS4VwWxxhvA9fgpKHzEctZqGX/zdNU3H5pWF
/yrrGkuPp0SflE4rnHbg1ga0Ci6O2g0srUV/XKPPURCYJtRNVJ4Y5r7zhXTsofYBrzdG7cT8kugkG2
2I8wkkaCFX+tq3piqMLLJ8K2JDwdUK7UlSmtNA6/Ir1xH+kZFa4Wq2acmDs11UiSofbPboDbQt
6PMWTuhkMF877Cg5hp+5HQwoFMjQVAsGeiYwDml3AOGv1TTRjF6qt9C489tVh+MG3JB6R4
CoFwkz+OCphdZP62JPrjx+8i0PEBFPfL7CiFE9hFAl9CQJPCjRz/IoXiBrrawAcxPrehDsYGIw==
myusername@my_host

Creating a new remote repository

34

$ git remote add new_origin git@git.biohpc.swmed.edu:<user_name>/my_new_project.git

$ git remote -v

new_origin git@git.biohpc.swmed.edu:<user_name>/my_new_project.git (fetch)

new_origin git@git.biohpc.swmed.edu:<user_name>/my_new_project.git (push)

$ git push new_origin master

Counting objects: 23, done.

Delta compression using up to 32 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (23/23), 2.17 KiB | 0 bytes/s, done.

Total 23 (delta 2), reused 0 (delta 0)

remote:

remote:

remote: The private project <user_name>/my_new_project was successfully created.

remote:

remote: To configure the remote, run:

remote: git remote add origin git@git.biohpc.swmed.edu:<user_name>/my_new_project.git

remote:

remote: To view the project, visit:

remote: https://git.biohpc.swmed.edu/<user_name>/my_new_project

remote:

remote:

remote:

To git@git.biohpc.swmed.edu:<user_name>/my_new_project.git

* [new branch] master -> master

mailto:git@git.biohpc.swmed.edu:%3Cuser_name%3E/my_new_project.git

• Various hands-on resources: https://docs.github.com/en/get-started/quickstart/git-and-github-learning-

resources

• Further resources, from Atlassian: https://www.atlassian.com/git

• A little on why Git can be useful for describing your projects:

• https://jeremykun.com/2020/01/14/the-communicative-value-of-using-git-well/

• A more in-depth examination of the abstract ideas behind Git: https://think-like-a-git.net/

• The ‘behind-the-scenes’ of how Git works at its most basic level: https://jwiegley.github.io/git-from-the-

bottom-up/

• If you listen to podcasts, Coding Blocks has a subseries where they discuss this e-book at length and from

several different perspectives.

• https://www.codingblocks.net/podcast/git-from-the-bottom-up-the-index/

Further Reading

35

https://docs.github.com/en/get-started/quickstart/git-and-github-learning-resources
https://www.atlassian.com/git
https://jeremykun.com/2020/01/14/the-communicative-value-of-using-git-well/
https://think-like-a-git.net/
https://jwiegley.github.io/git-from-the-bottom-up/
https://www.codingblocks.net/podcast/git-from-the-bottom-up-the-index/

Thank you!

36

[web] portal.biohpc.swmed.edu

[email] biohpc-help@utsouthwestern.edu

