

Basics of Linux I

The Linux Command Line Interface

[web] portal.biohpc.swmed.edu [email] biohpc-help@utsouthwestern.edu

Updated for 2021-02-10

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics

BioHPC

Study Resources: A Free Book

Free, Creative-Commons PDF

On the portal Training -> Slides & Handouts

http://linuxcommand.org/tlcl.php

500+ pages

*Some of the materials covered in today's training is from this book

Study Resources: tutorial website

This is a good place to start...

Study Resources: websites

https://linoxide.com/

An all-time favorite. Has all sorts of resources.

https://itsfoss.com/

"...an award-winning web-portal that focuses on Open Source in general and Linux in particular."

https://linuxjourney.com/

Great for learning the basics of Linux!

https://wizardzines.com/comics/

Simply awesome!

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

BioHP

Study Resources: follow along...

You can follow along using:

1. The Nucleus Web terminal on the BioHPC portal (VPN required):

https://portal.biohpc.swmed.edu/terminal/ssh/

- 2. PuTTY, WSL, MobaXterm or any other SSH client* from your PC
- 3. Terminal from your MacBook

ssh <username>@nucleus.biohpc.swmed.edu

*<u>https://www.smarthomebeginner.com/best-ssh-clients-windows-putty-alternatives/</u>

The Terminal

Not too long ago (30+ years ago)...

Computers were primarily found in research centers, business, educational institutions, and libraries.

Access points to these computers were called **terminals**:

- Simple keyboard and monitor interface;
- Computer may be a small, single unit or part of a larger network;
- Many of these computers ran a licensed UNIX operating system developed by AT&T.

				Term	inal	
-rwxr-xr-x 1	sys 52	2850 Ju	un 8	1979	hptmunix	
drwxrwxr-x 2	bin	320 Se	∋p 22	05:33	lib	
drwxrwxr-x 2	root	96 Se	ep 22	05:46	mdec	
-rwxr-xr-x 1	root 50)990 Ji	un 8	1979	rkunix	
-rwxr-xr-x 1	root 5:	1982 Ju	un 8	1979	rl2unix	
-rwxr-xr-x 1	sys 5:	1790 Ju	un 8	1979	rphtunix	
-rwxr-xr-x 1	sys 5:	l274 Jι	un 8	1979	rptmunix	
drwxrwxrwx 2	root	48 Se	ep 22	05:50	tmp	
drwxrwxr-x12	root	192 Se	∋p 22	05:48	usr	
# ls −l /usr						
total 11						
drwxrwxr-x 3	bin	128 Se	ep 22	05:45	dict	
drwxrwxrwx 2	dmr	32 S6	∋p 22	05:48	dmr	
drwxrwxr-x 5	bin	416 Se	∋p 22	05:46	games	
drwxrwxr-x 3	sys	496 Se	∋p 22	05:42	include	
drwxrwxr-x10	bin	528 Se	∋p 22	05:43	lib	
drwxrwxr-x11	bin	176 Se	∋p 22	05:45	man	
drwxrwxr-x 3	bin	208 Se	∋p 22	05:46	mdec	
drwxrwxr-x 2	bin	80 Se	∋p 22	05:46	pub	
drwxrwxr-x 6	root	96 Se	ep 22	05:45	spool	
drwxrwxr-x13	root	208 Se	∋p 22	05:42	shc	
# ls –l /usr/	dmr					
total 0 #						

Modern Unix Descendants

1991-today

2001-today

2008-today

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics

What operating system do BioHPC machines primarily run on?

- Red Hat Enterprise Linux (RHEL) 7.6
- GNU/Linux distribution
- Linux Kernel 3.10
- Gnome 3 Desktop Environment
- Bourne-Again Shell (bash)
- Modular environment
- Slurm Workload Manager

BASH(1)	Parag	eneral Commands	Manual	BASH(1)
NAME				
	bash - GNU Bourn	e-Again SHell		
SYNOPS	IS			
	bash [options] [fije]stem do BioHP		
COPYRIC	ыт			
	Bash is Copyrigh tion, Inc.	t (C) 1989-2011	by the Free Softwan	re Founda-
	GNU/Linux			
DESCRI	Bash is an sh-co executes comman file. Bash also and <u>C</u> shells (ks	mpatible command ds read from incorporates us h and csh).onme	d language interpre the standard input seful features from ni	eter that or from a the <u>Korn</u>
Manua	Bash is intend Shell and Utilit (IEEE Standard 1 page bash(1) li	ed to be a con ies portion of 003.1). Bash ca ne 1 (press h fo	formant implementat the IEEE POSIX spec an be configured to or help or q to quit	ion of the cification be POSIX- C)

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics

SSH – Secure Shell

Most of your interactions with the **Nucleus** cluster will likely be through SSH.

Most modern GNU/Linux distributions have an **OpenSSH** client installed by default. Mac OS X also has SSH. **PuTTY** is recommended for MS Windows.

Another option on Windows: use Windows Subsystem for Linux (WSL).

\$ ssh s191529@nucleus.biohpc.swmed.edu

The Text (Command-Line Interface) Shell

The interaction between user and the operating system is provided by a shell.

The shell accepts keyboard commands and hands them off to the operating system.

The BioHPC default shell is *bash* – the *Bourne-Again Shell*.

About the shell

https://twitter.com/b0rk/

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Logging into Nucleus – Where Am I?

[s191529@Nucleus005 ~]\$ pwd

pwd - print working directory

/home2/s191529

Is - list contents of a directory

[s191529@Nucleus005 ~]\$ ls

[s191529@Nucleus005 ~]\$ ls /home2/s191529

[s191529@Nucleus005 ~]\$ ls ~

[s191529@Nucleus005 ~]\$ ls .

Study Resources: man pages

Get a command's help page: man <command>

[s191529@rhel7vm ~]\$ man ls

Press q to exit the man page

Filenames that start with . are hidden. You can view them however with the **Is** command and pass the **-a** flag to it (**a** for all).

Try some other Linux commands and see what they output:

[s191529@rhel7vm ~]\$ date

[s191529@rhel7vm ~]\$ whoami

[s191529@rhel7vm ~]\$ echo Hello World!

Linux Basics: The File System

Everything in Linux is a file. Keep this in mind. Files on a Linux system are arranged in a **hierarchical directory structure**. The first directory in the filesystem is named the **root** directory.

Navigating the file system

How does one change his/her working directory?

cd – change directory

[s191529@Nucleus005 ~]\$ cd /work/biohpcadmin/s191529/

[s191529@Nucleus005 s191529]\$ cd ..

[s191529@Nucleus005 biohpcadmin]\$ cd s191529/

Shortcuts to help you out:

- . This is the directory you are currently in.
- .. Takes you to the directory above your current one.
- This directory defaults to your home directory.
- - This will take you to the previous directory you were just at.
- Finally, the **Up Arrow** brings the last command you hit.

Linux Command Line: Files and Directories

Files and directories may be referenced by an absolute or relative path

Absolute path—specify the location of a file or directory from / (the root directory)

[s191529@Nucleus005 ~]\$ cd /project/biohpcadmin

Pros: you know exactly where you are going! Cons: tedious if there are many nested folders.

• **Relative path**— paths relative to your working directory.

[s191529@Nucleus005 biohpcadmin]\$ cd s191529

[s191529@Nucleus005 s191529]\$ cd ..

Determining your storage quota

```
[s191529@Nucleus005 ~]$ quota -s
```

Disk quotas for user s191529 (uid 191529):								
Filesystem	space	quota	limit	grace	files	quota	limit	grace
lysosomehome:/home2								
2158	31M 51	200M	71680	Μ	153k	C	0	

[s191529@Nucleus005 ~]\$ lfs quota -g 1001 /project -h

Disk quotas for grp 1001 (gid 1001): Filesystem used quota limit grace files quota limit grace /project 17.59T 0k 0k - 12021829 0 0 -

How does one find the **gid**?

[s191529@Nucleus005 ~]\$ id 191529

How much storage is a directory occupying?

[s191529@Nucleus005 ~]\$ Is -I Documents/misc/

How much space does this directory, and all its contents use? **du** – disk usage (**-h** – human readable; **-s** – summarize)

[s191529@Nucleus005 ~]\$ du -hs Documents/misc/

```
How can I create a new (empty) file? touch
```

[s191529@Nucleus005 misc]\$ touch myfile.txt

The command **touch** can also be used to change timestamps. What kind of file a file is?

file

[s191529@Nucleus005 misc]\$ file myfile.txt

In Linux, file extensions aren't required.

Exploring the file system

[s191529@Nucleus005 ~]\$ cd /project/shared/biohpc_training

Let's concatenate the contents of a file to the standard output of the terminal. In other words, let's print to the terminal:

[s191529@Nucleus005 biohpc_training]\$ cat c475_r0ck_4m_1_r16h7.txt

Notice: not all files have an extension:

[s191529@Nucleus005 biohpc_training]\$ file RJ_WS

Wish to clear the terminal?

[s191529@Nucleus005 biohpc_training]\$ clear

[s191529@Nucleus005 biohpc_training]\$ reset

Bash has a very useful auto-completion shortcut for typing commands more quickly.

Give it a try!

Type:

cd /project/shared/biohpc_training cat c475_r0ck_4m_1_r16h7.txt

Viewing large text files

A file does not have to be very large before concatenating them to the standard output becomes unhelpful. The file extension has a **.fastq.gz** file extension, but what does **file** produce?

[s191529@Nucleus005 biohpc_training]\$ file HD728.R1.fastq.gz

The file is a compressed file – its contents are unreadable to us. Let's decompress the file first using **gzip**.

[s191529@Nucleus005 biohpc_training]\$ file HD728.R1.fastq.gz

[s191529@Nucleus005 biohpc_training]\$ gzip -cd HD728.R1.fastq.gz > HD728.R1.fastq

Exercise

Using the program **wc**, count how many lines of text are inside **HD728.R1.fastq**? How would one access information on how to use this program?

Viewing large text files

[s191529@Nucleus005 biohpc_training]\$ wc -l HD728.R1.fastq

Keep in mind that **cat** it's only meant for short content. Trying to **cat** 2M+ lines to the standard output is going to be a bit problematic. Let's try it anyway...

Interrupting a Running Program

What happens if I need to kill a program that is running? Pressing **CTRL + C** will send an interruption signal (SIGINT) to the program which usually kills it. If not...

[s191529@Nucleus005 biohpc_training]\$ man kill

Head, Tail, More, Less

Not always practical to print an entire file to the shell. Use these commands: **head** – print the first 10 lines of each file to the standard output **tail** – print the last 10 lines of each file to the standard output

[s191529@Nucleus005 biohpc_training]\$ head HD728.R1.fastq

Exercise

Print the first 50 lines of HD728.R1.fastq! Hint: man head

You can navigate through a text file page by page with less:

[s191529@Nucleus005 biohpc_training]\$ less HD728.R1.fastq

To navigate through **less**:

- **q** to quit out of less
- **Page up/down**, **Up/Down** to navigate
- g/G moves to the beginning/end of the text file
- /text search for specific text
- **h** If you need a little help about how to use less while you're in less, use help.

Standard Streams

Streams are usually connected to the terminal in which they are executed, but that can be changed using **redirection operators** and/or **pipes**.

Redirection operators are a subset of control operators. They allow you to direct the input or output (stream) of your command.

The **pipe** operator is used to pass the output of a command to the input of another command. The vertical bar (|) represents this operator.

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

Redirection Operators

A simple example of a program that uses **standard input** is the **cat** command. Standard input can also come from an input file:

[s191529@Nucleus005 biohpc_training]\$ cat ~/.bashrc

You can use **input redirection** (represented by <) to achieve the same results as above:

[s191529@Nucleus005 biohpc_training]\$ cat < ~/.bashrc

You can redirect **standard output** to a file (represented by >). This is useful if you want to save the output for later use, or as a log of a script:

[s191529@Nucleus005 biohpc_training]\$ cat ~/.bashrc > bashrc.txt

Use the **output append operator** (represented by >>) if you want to append to an existing file:

[s191529@Nucleus005 biohpc_training]\$ stat ~/.bashrc >> bashrc.txt

File Descriptors

Linux often represents the three standard streams as file descriptors:

File Descriptor	Name	Standard Stream
0	Standard Input	stdin
1	Standard Output	stdout
2	Standard Error	stderr

Let's try the **standard error**:

[s191529@Nucleus005 biohpc_training]\$ ls -l /bin/usr

We can redirect the **standard error** to a file:

[s191529@Nucleus005 biohpc_training]\$ ls -l /bin/usr 2> error.txt

You can redirect **stderr** and **stdout** to a single file (two ways):

[s191529@Nucleus005 biohpc_training]\$ ls -l /bin/usr > error.txt 2>&1

[s191529@Nucleus005 biohpc_training]\$ ls -l /bin/usr &> error.txt

Redirecting to /dev/null

What if I don't care at all about the stdout and stderr?

[s191529@Nucleus005 biohpc_training]\$ ls -l /bin/usr > /dev/null 2>&1
[s191529@Nucleus005 biohpc_training]\$ ls -l /bin/usr &> /dev/null

"To begin, **/dev/null** is a special file called the null device in Unix systems. Colloquially it is also called the **bit-bucket** or the **blackhole** because it immediately discards anything written to it and only returns an end-of-file (**EOF**) when read."

Text Editors

Vim

Cryptic commands! Cheat sheet on the portal. Quick tutorial: <u>http://www.washington.edu/computing/unix/vi.html</u>

Emacs

An extensible, customizable text editor. Quick tutorial: <u>http://www.gnu.org/software/emacs/tour/</u>

nano

Easier to use. Quick tutorial: <u>http://mintaka.sdsu.edu/reu/nano.html</u>

Any text editor from your PC or Mac.

Mount your directories as network drives:

https://portal.biohpc.swmed.edu/content/guides/biohpc-cloud-storage/

Permissions

JULIA EVANS @b@rk UNIX	permissio	ns 4
There are 3 things you can do to a file	Is - I file txt shows Here's how to inter	you permissions. pret the output:
read Jrite execute	rw- rw- † bork (user) staff (group) can read & write read & write	ANYONE can read
File permissions are 12 bits setuid setaid User group all OOO 110 110 100 sticky rwx rwx rwx For files: r = can vrite X = can execute For directories, it's approximately: r = can list files W = can create files	110 in binary is 6 So $rw - r - r - r - r - r - r - r - r - r -$	Setuid affects executables \$1s-1 /bin/ping rws r-x r-x root root this means ping <u>always</u> runs as root setgid does 3 different unrelated things for executables, directories, and regular files.

https://wizardzines.com/comics/permissions/

Permissions

Examples:

chmod g+rw script.sh chmod a+x script.sh chmod g-x script.sh	# Add read/write permissions for the group# Add execute permission for everyone# Remove execute permission for the group
chmod 700 script.sh	# ?
chmod 640 script.sh	# ?

Copying data

First, let's create an empty directory with **mkdir**:

[s191529@Nucleus005 biohpc_training]\$ mkdir -p /project/biohpcadmin/shared/cuda_samples

Copy everything recursively (-r) from source to destination:

[s191529@Nucleus005 biohpc_training]\$ cp -r ~/cuda_samples/* /project/biohpcadmin/shared/cuda_samples/

We can copy the entire folder recursively:

[s191529@Nucleus005 biohpc_training]\$ cp -r ~/cuda_samples /project/biohpcadmin/shared/cuda_samples

If you copy a file over to a directory that has the same filename, the file will be overwritten with whatever you are copying over. You can use the **-i** flag (interactive) to prompt you before overwriting a file. By default, **cp** will apply your ownership and primary group to files.

Moving data

Very similar to the copy command. You can rename a file (or a directory) with **mv**: [s191529@Nucleus005 biohpc_training]\$ mv foo.txt blah.txt

And of course, we can move things from **source** to **destination**:

[s191529@Nucleus005 biohpc_training]\$ mv blah.txt foo.bar /somedir

If you don't want to overwrite anything:

[s191529@Nucleus005 biohpc_training]\$ mv -i foo.txt blah.txt

Note that **mv** will attempt to preserve original permissions. You can also make a backup of that file and it will just rename the old version with a ~:

[s191529@Nucleus005 biohpc_training]\$ mv -b /somedir /newdir

Deleting Files

- Be very cautious of your ability to destroy files!
- There is **no Recycling Bin** to restore your files.
- Once files are deleted by the CLI, it is generally very difficult to recover them.
- Make sure important data is backed up! The command to remove things is **rm**, and it's very similar to **cp** and **mv**.

To delete everything in a folder:

[s191529@Nucleus005 biohpc_training]\$ rm somedir/*

To delete a folder recursively:

[s191529@Nucleus005 biohpc_training]\$ rm -r somedir

Try deleting things interactively (recommended):

[s191529@Nucleus005 biohpc_training]\$ rm -i somedir/*

Wildcards

* Match any number of characters:

ls	*	Any file
ls	notes*	Any file beginning with notes
ls	*.txt	Any file ending in .txt
ls	*2019*	Any file with 2015 somewhere in its name

? Match a single character:

ls data_00?.txt Matches data_001, data_002, data_00A, etc.

[] Match a set of characters (bracket expression):

ls data_00[0123456789].txt
ls data_00[0-9].txt Matches data_001 - data_009, not data_00A

History

There is a history of the commands that you previously entered. This is useful as you can look through these commands:

[s191529@Nucleus005 biohpc_training]\$ history

To run the previous command without typing it again, hit **!!**. Another history shortcut is **Ctrl-R**, this is the reverse search command, if you hit **Ctrl-R** and you start typing parts of the command you want it will show you matches and you can just navigate through them by hitting the **Ctrl-R** key again. Once you found the command you want to use again, just hit the **Enter** key.

To find out what a command does, try using whatis:

[s191529@Nucleus005 biohpc_training]\$ what is cat

Environmental Variables – Controlling the behavior of the Shell

Several variables control the behavior of the shell. You can print all these variables with:

\$ env

Or print them individually:

\$ echo \$SHELL /bin/bash

\$ echo \$HOME /home2/s191529

\$ echo \$USER s191529 **\$PATH** variable is one of the most important and tells the shell where your programs are:

\$ echo \$PATH
/home2/s191529/.local/bin:/cm/shared/a
pps/slurm/16.05.8/sbin:/cm/shared/apps/
slurm/16.05.8/bin:/usr/local/bin

The module system on BioHPC modifies this **\$PATH** so that programs are made available to the user. One can also manually edit their **\$PATH**

\$ export PATH=/home2/s191529/bin:\$PATH

Overview of commands used

Command	Full Name	Description
man	manual	man <command/> opens manual for a command
ssh	secure shell	opens a remote shell on a server
echo	echo	prints statement to standard output
pwd	print working directory	prints current working directory
cd	change directory	change to specified directory
ls	list	list contents of a directory
file	file	determines type of file
cat	concatenate	concatenates files to standard output
head	head	prints the top n-lines of a text file
tail	tail	prints the bottom n-lines of a text file
history	command history	outputs previously hit commands
less	less	like more, but allows backwards traversal of a file
du	disk usage	calculate disk usage of a file or folder
vi	vi text editor	simple text editor
ср	сору	copy a file or directory from a source to a destination
mv	move	moves a file from a directory from a source to a destination
rm	remove	deletes a file or a directory
chmod	change mode	modifies permissions of a file or directory

UTSouthwestern Medical Center Lyda Hill Department of Bioinformatics That's it for today! Questions?

