
BioHPC Reproducibility Series
Containers for Scientific Software

Training will begin at 10:32AM

biohpc-help@utsouthwestern.edu

26 Apr 2023

mailto:biohpc-help@utsouthwestern.edu

▪Part 1 – Containers from a user perspective – running, pushing, pulling

▪Part 2 – Containers from a developer perspective – building/writing; more technical, version control

▪Part 3 – Continuous Integration / Continuous Deployment – automating time-consuming tasks.

These sessions are not fully planned out, so if you would like to see additional content, please email BioHPC Help.

BioHPC Reproducibility Series

build scan

!

Container Registry

? ?

Developer Machine

Base Image

A:PASS
B:WARN
C:FAIL
D:PASS

…

Results

Reports

Code Repository
• Container Recipe
• .gitlab-ci.yml

Test Runners
• Run Tests
• Build/Tag images

Image Registry
• Login/Push to registry
• Container Scanning

Review + Revise
• CI Test Results
• Security Reports

Release

>_

CI Test Runners

test_A test_B

A
PASS

B
WARN

GitLab CI

A:PASS
B:PASS
C:PASS
D:PASS

…

!

?

Container Registry

✓

Deploy?

?

Review

Revise

Release

>_

User
Machine

4

In any code that follows,

▪ Lines beginning with $> are entered as commands in the terminal, or are individual lines in a script.

▪ A backslash \ at the end of a line is a line continuation, i.e.

“Good to know” technical slides will be shown by this band – you can safely ignore these,
but they are useful to improve your understanding.

$> cat \
~/my.file

$> cat ~/my.fileis the same as

▪What is a container?

–Why should we use them for science?

–What’s the difference between them and virtual machines?

–Terminology

▪Singularity and Apptainer – the HPC container technologies

–pull – Downloading containers

–running software inside of containers

–push – Uploading containers

▪BioHPC’s GitLab Container Registry

–Access Tokens

▪Walkthrough Repository

–Code will be available some time after the training

BioHPC Reproducibility Series – Part 1: Containers

Container – A unit of encapsulated software (with dependencies) which is running

Image – The file which, when run, produces a running container.

– Often called a container image

Build – The process of creating an image from a recipe file.

– Details vary between different container technologies

– Usually requires root access or more modern virtualization technologies

Tag – The ‘name’ of an image. Can also include the ‘shipping address’ of an image.

– Assigned at build-time, or later

– Images can have multiple tags

Repository – Where your code goes.

Registry – Where your container images go.

Terminology

1. A container image is just a fancy directory tree containing different programs and libraries.

–Different image formats → different ways to package this tree.

2. A running container is just a specially encapsulated process

–Different container runtimes → Different ways to run a container.

3. Many programs that you might like to install are available as containers, and you can run them yourself.

–Python, R, LAMMPS, bamtools, samtools, Tensorflow…

–Biocontainers (https://github.com/BioContainers/containers)

▪The following BioHPC modules are already running transparently as containers:

Main points about containers

7

AtacWorks danpos magetbrain Telseq
cellprofiler deepvariant Quarto trinity
chimerax DROMPAplus R4.2
Circos guppy Seurat

▪Containers are isolated

–Running in their own environment, don’t affect each other → Combine software you normally couldn’t.

▪Containers include their dependencies and travel with them

– Same code running the same way everywhere.

▪Containers are lightweight

–Most containers run with with speed comparable to a regular program.

▪ Imagine a real-life shipping container that has an entire wet lab inside.

Why do I care about containers?

▪ Containers are isolated; include their dependencies and travel with them; and are lightweight

As a user of containers:

▪ This allows you to use more sophisticated workflows

▪ Easily run complex software without painful installations.

As a creator of containers:

▪ You can spend much more time adding core features

▪ Substantially easier to get others to use your code → Get your science out there.

Why do I care about containers?

▪Containers are a software technology which contain a computational environment.

–Binaries and executables

–Libraries

–Dependencies in general – only what’s needed for a single software.

▪ Containers are best for when you need…

–Single-task applications with short lifetimes

–An immutable artifact that you can use later.

▪VMs are best for when you need…

–Flexible systems with long lifetimes

–Strong isolation

–Administrator/root control (e.g. BUILDING containers)

What actually is a container? Why use containers at all when virtual machines (VMs) exist?

10

Singularity and Apptainer, Docker and Podman

12

Docker is the original OCI-compliant container technology
- Containers as services
- Containers are briefly run as a root user
- Entirely different mode of operation (client/server model)

Podman is a drop-in replacement for Docker with better
security features.
- Works similarly to Singularity, with similar security.
- Can do rootless containers and rootless builds
- Coming in the next couple of cluster upgrades

Singularity is a container technology which is
designed for HPC usage.
- Containers run as the user who starts them
- User cannot elevate privileges
- Can use high-speed storage easily
- Can run most OCI containers
- Better with SLURM, MPI, etc.

Apptainer is effectively the same project, which
split in a different direction around Dec 2021.

We will focus on Singularity containers running on BioHPC

13

A basic filesystem

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

BioHPC-specific mounted filesystems

Your personal folder

Linux system directories

Scratch space

At the ‘base’ of the file tree is the root – the point where all absolute paths are referenced.

Certain directories come with Linux and are where such things
as binaries/executables, system libraries, etc. are installed to.

/tmp acts as a temporary scratch space

Your $HOME folder (on our system, /home2) → personal config
- .bashrc, ssh keys, etc.
- caches, Python envs, R libraries…

On BioHPC, we provide access to additional
storage through mounts. Provides access to your
data, and in the case of /cm/shared, modules.

14

When you log in to BioHPC, you are dropped into a shell in your home folder.

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

Your personal folder

$> echo “${HOME}”
/home2/bob

15

A container image is basically a directory tree of its own (like a zip archive)

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

python27.sif

/

/bin

/etc

/…

16

Singularity creates a container from an image file…

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

$> singularity run\
python27.sif

17

…borrows some critical folders from the host…

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

/proc

/tmp

$> singularity run\
python27.sif

18

…maps your external user info inside the container…

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

/proc

/tmp

/home2
$> singularity run\
python27.sif

19

… optionally does additional config (e.g. mounting more folders, setting env vars)…

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

/proc

/tmp

/home2

/project

$> singularity run\
python27.sif

20

… links everything together inside the container …

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

/proc

/tmp

/home2

/project

$> singularity run\
python27.sif

21

… and starts running a command inside the container.

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

/proc

/tmp

/home2

/project

$> python2

$> _

22

… and starts running a command inside the container.

/

/home2

/cm/shared

/project

python27.sif

/bin

/etc

/proc

/tmp

/home2/bob

/

/bin

/etc

/proc

/tmp

/home2

/project

$> python2

$> _

… and starts running a command inside the container.

/

/bin

/etc

/proc

/tmp

/home2

/project

$> python2

As far as the command inside the container is concerned,
it’s running on a normal system.

It doesn’t matter if the host is Ubuntu 22.04, or Red Hat
7.3, or running on BioHPC, or running anywhere else –
- the environment inside the container is the same.

Rather than building workflows where everything has to
install and work together, you can have each container
perform one step at a time.

24

A Typical Container Lifecycle

DockerHub
Container Registry

Container
Recipe

pull
docker://push

build

Someone’s machine running Docker Your machine/node on BioHPC

run

BioHPC GitLab
Container Registry

push
oras://

OCI image

SIF image

Container
Recipe

▪Like Photoshop layers, or merging config files, upper layer ‘overlays’ on a lower layer.

– If a file is present in the lowerdir but NOT the upperdir, the lowerdir file will appear.

– If a file is NOT present in the lowerdir, but IS in the upperdir, the upperdir file will be used.

– If a file is present in both, the upperdir file will be used.

▪Think Photoshop layers.

Overlay Filesystems

25

What’s the difference between OCI (Docker/Podman) and Singularity images?

26

OCI image layers

OCI images are made of layers that are overlaid on top
of one another to yield the final image.
- This is a good design if there are a lot of containers

that are very similar – can reuse identical layers.

Singularity uses a single ‘monolithic’ image file
- This lets the entire container be moved around as a

single file and is easier to archive.
More focused towards HPC workloads
- Easier to use with SLURM, MPI, etc.
- Better security design
- More integrated → Less configuration needed
Can convert OCI images to Singularity images
- ‘squashes’ the layers into a single file.

Singularity image

OCI image
SIF image

▪On BioHPC, you can run containers, and you can pull/push containers, but you may not build containers

(currently)

- build usually requires additional permissions (e.g. yum or apt-get install – things for the root user)

- We are developing a Constructor interface to make it easier to build containers on BioHPC.

- We have a somewhat technical workflow for building containers (more on that later)

- Let us know if you’re interested in this!

Resources:

▪https://docs.sylabs.io/guides/latest/user-guide/quick_start.html#overview-of-the-singularityce-interface

▪https://apptainer.org/docs/user/main/quick_start.html#overview-of-the-apptainer-interface

Using Singularity/Apptainer

27

https://docs.sylabs.io/guides/latest/user-guide/quick_start.html#overview-of-the-singularityce-interface
https://apptainer.org/docs/user/main/quick_start.html#overview-of-the-apptainer-interface

If you want to use containers from a registry, you can use Singularity on any BioHPC system

(workstation, cluster node)

▪ module add singularity (Recommend 3.9.9 or 3.5.3)

▪ Download Singularity images, or convert (most) OCI images to Singularity images

▪ Run Singularity image

If you want to build containers, you must build on a non-Nucleus system

▪ Virtual Machine (Running on personal computer, UTSW computers)

▪ Docker for Windows

▪ Vagrant Box on BioHPC workstation (not cluster node!)

If you would like guidance on building containers with Vagrant, contact BioHPC Help

What you need for what you’re doing

28

▪Singularity can pull from multiple locations:

singularity pull – Getting your first container!

29

From Sylabs cloud library
$ singularity pull alpine.sif library://alpine:latest

From Docker Hub – defaults to docker.io. These lines are equivalent.
$ singularity pull tensorflow.sif docker://tensorflow/tensorflow:latest
$ singularity pull tensorflow.sif docker://docker.io/tensorflow/tensorflow:latest

From supporting OCI registry
$ singularity pull image.sif oras://some.registry.endpoint/namespace/image:version_tag

*shub:// endpoints are valid for now, but their future is uncertain.

Singularity images can be stored in OCI registries using the ORAS (OCI Registry As Storage) protocol

▪Singularity can pull from multiple locations:

singularity pull – Getting your first container!

30

From Sylabs cloud library
$ singularity pull alpine.sif library://alpine:latest

From Docker Hub – defaults to docker.io. These lines are equivalent.
$ singularity pull tensorflow.sif docker://tensorflow/tensorflow:latest
$ singularity pull tensorflow.sif docker://docker.io/tensorflow/tensorflow:latest

From supporting OCI registry
$ singularity pull image.sif oras://some.registry.endpoint/namespace/image:version_tag

*shub:// endpoints are valid for now, but their future is uncertain.

Singularity images can be stored in OCI registries using the ORAS (OCI Registry As Storage) protocol

▪ If you are pulling from a Docker/OCI-type registry, you may need to authenticate first.

--docker-login is one-time (the duration of the command)

singularity pull – Authenticating

31

From Docker Hub – defaults to docker.io
$ singularity pull --docker-login tensorflow.sif docker://tensorflow/tensorflow:latest
$ singularity pull --docker-login tensorflow.sif docker://docker.io/tensorflow/tensorflow:latest

From supporting OCI registry
$ singularity pull --docker-login image.sif oras://some.registry.endpoint/namespace/image:version_tag

You can also export some environment variables containing your login info before trying to pull.
$ export SINGULARITY_DOCKER_USERNAME=“Test_Tok”
$ export SINGULARITY_DOCKER_PASSWORD=“zH_AQRxrnesN8UEgzNop”

Singularity will automatically use the provided credentials to log in to the registry
$ singularity pull image.sif oras://some.registry.endpoint/namespace/image:version_tag

▪Singularity runs the containers as you - anything you do inside the container ‘looks like’ your username did it.

– Mounts your /home2 directory by default.

▪We have configured the Singularity module to mount the BioHPC filesystems into containers by default (/project,

/work, /archive)

- Can prevent this behavior with --contain option.

▪Can ‘bind’ additional directories within the container.

– Using --bind src[:dest[:opts]]

– So if you need a certain file to be in a particular location within the container, you can make that happen.

Singularity runs containers as your user account

32

A container is built with a default command – in the case of the python_2.7 image, this is the command python2

Singularity run

33

You can also run without manually pulling.

$ singularity pull python_2.7.sif docker://docker.io/python:2.7
$ singularity run python_2.7.sif
Having run the previous command, you will be dropped into a Python instance.

$ singularity run docker://docker.io/python:2.7
Singularity will pull the image, convert it to a SIF format, and then run it as before.

$ singularity run python_2.7.sif
Python 2.7.18 (default, Apr 20 2020, 19:27:10)
[GCC 8.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 2+2
4
>>>

singularity exec <container> <command> runs the specified command inside of the container

Singularity Exec

34

$ singularity exec python_2.7.sif python -c 'print 2+2'
4

Any command available inside a container can be used

$ singularity exec python_2.7.sif ls /
archive boot endosome etc home2 lib64 mnt proc root sbin srv tmp var
bin dev environment home lib media opt project run singularity sys usr work

$ nc --version
Ncat: Version 7.50 (https://nmap.org/ncat)
$ singularity exec python_2.7.sif nc --version
/.singularity.d/actions/exec: 21: exec: nc: not found

Commands might be available in the host, but not in the container.

▪ singularity shell will drop you into an interactive command-line shell within the container.

Singularity shell

35

$ singularity shell python_2.7.sif
Singularity> cat /etc/os-release | head -n 3
PRETTY_NAME="Debian GNU/Linux 10 (buster)"
NAME="Debian GNU/Linux"
VERSION_ID="10"
Singularity> exit
exit

$ cat /etc/os-release | head -n 3
NAME="Red Hat Enterprise Linux Server"
VERSION="7.7 (Maipo)"
ID="rhel"

This is a great way to play around with containers – shell is like an interactive exec

▪ singularity sif allows you to inspect the singularity image file itself, which can be useful for understanding its

behavior.

–This is an advanced debugging topic.

▪ singularity cache list shows the cache – this can be quite large, especially if you pull OCI images.

–singularity cache clean will clear this (can save 10s of GB of storage)

▪ singularity instance will run a container in the background, like a daemon or service.

▪ singularity help

–☺

Other singularity commands of use

37

▪Singularity can push to oras:// and library:// endpoints, but not docker://

–Can’t ‘unsquash’ a SIF file into something Docker Hub understands.

Singularity push

38

BioHPC GitLab
Container Registry

pull
docker://

Your machine/node on BioHPC

run

BioHPC GitLab
Container Registry

push
oras://

SIF imageDocker Hub
Container Registry

1) Setting up your GitLab Registry

2) Setting up access credentials

3) Logging in…

a) With Docker (for building and pushing)

b) With Singularity (for using/pulling)

4) Examples

GitLab Registry – Quick Overview

39

First, create a repository and enable the Container Registry

▪When logging into a private GitLab Container Registry, you CAN use your BioHPC credentials. This is more

convenient for testing, but this is not a good practice.

▪For security purposes, it is best to generate Access Tokens.

- Project Access Tokens are generated in association with a single project, and can provide access to that

project’s repository and registry.

- Personal Access Tokens are generated in association with a user, and can provide access to the repositories

and registries of any project that the user has access to.

- Both can have their permissions controlled (e.g. a Project Token that only allows users to pull images, but does

not allow pushing)

Next, Access Credentials

41

Access Tokens - Project

“Username”
“Password”

1. Give Token a Name

2. Select
Scopes/Permissions

3. Generate Token

4. Record the Name and Token – they
are your Username and Password you
will use to log in to GitLab from your

command line or scripts.

Access Tokens - Personal

“Password”
“Username”

Best practice is to create tokens
with expiration dates, with as few
scopes (permissions) as possible.

For both Personal and Project Access Tokens:

You may need to create a token with API
scope in order to push/pull images
- api + write_registry for pushing
- read_api + read_registry for pulling

For all of the examples, we assume that we are dealing with:

– a user alice,

– who is part of a group example_group,

– working with a repository example_repository.

– Her password is my_password.

– She has created a Project Access Token in example_repository

– with the username Test_Tok,

– giving it api and read_registry scopes,

– which created the token password zH_AQRxrnesN8UEgzNop

–She is working with the centos:centos8 image, originally located on docker.io

Examples

48

▪BioHPC Username/Password – AVOID DOING THIS.

▪Project Access Token – No leaking of BioHPC credentials

docker login -u Test_Tok -p zH_AQAxrnesN7UEgzNop git.biohpc.swmed.edu:5050

Logging in to the GitLab Registry - Docker

$ docker login -u "alice" -p "my_password" git.biohpc.swmed.edu:5050

$ docker login -u "Test_Tok" -p "zH_AQRxrnesN8UEgzNop" git.biohpc.swmed.edu:5050

▪Assuming there’s already a local Docker image my_local_image:1.5.123

▪Need to re-tag the local image with a new tag indicating the remote destination and name.

▪Before pushing, you must login to the git.biohpc.swmed.edu:5050 endpoint.

▪Push the same tag, in full:

Push to/Pull from GitLab Registry

$ docker tag my_local_image:1.5.123 \
git.biohpc.swmed.edu:5050/example_group/example_repository/my_image:1.5.0
$ docker login -u "Test_Tok" -p "zH_AQRxrnesN8UEgzNop" git.biohpc.swmed.edu:5050
$ docker push git.biohpc.swmed.edu:5050/example_group/example_repository/my_image:1.5.0

Note that the local and remote image names (my_local_image:1.5.123 vs my_image:1.5.0) do not need to match.

▪GitLab Registry (Our current version of GitLab is 14.8)

–General usage: https://docs.gitlab.com/14.8/ee/user/packages/container_registry/index.html

▪Docker

–Command line: https://docs.docker.com/engine/reference/commandline/cli/

▪Singularity

–Quick Start: https://sylabs.io/guides/3.9/user-guide/quick_start.html

–Compatibility with Docker https://sylabs.io/guides/3.9/user-guide/singularity_and_docker.html

▪BioHPC

–Singularity on BioHPC: https://portal.biohpc.swmed.edu/content/guides/singularity-containers-biohpc/

– Training Slides: https://portal.biohpc.swmed.edu/content/training

Further Resources

51

https://docs.gitlab.com/14.12/ee/user/packages/container_registry/index.html
https://docs.docker.com/engine/reference/commandline/cli/
https://sylabs.io/guides/3.9/user-guide/quick_start.html
https://sylabs.io/guides/3.0/user-guide/singularity_and_docker.html
https://portal.biohpc.swmed.edu/content/guides/singularity-containers-biohpc/
https://portal.biohpc.swmed.edu/content/training/training-slides/

“I want to make sure that I have access to this image” → Using GitLab Container Registry as an archive for OCI images

52

▪Working on a machine running Docker:

– Pull Docker image

$ docker pull centos:centos8

– Tag Docker image

$ docker tag centos:centos8 \

git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

– Push new tag

$ docker pull centos:centos8

$ docker tag centos:centos8 \
git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

$ docker push \
git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

Implicitly pulls from Docker Hub by default.

“I want to use an image from this public GitLab repository/registry, using Singularity”

53

▪Working on any BioHPC system:

▪ (Choice 1) Run the image directly, implicitly pulling and caching it. Note the use of docker://

$ singularity run \

docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

▪ (Choice 2) pull and run:

$ singularity run \
docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

$ singularity pull local_centos8.sif \
docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8
$ singularity run local_centos8.sif

If a GitLab repository is public, so is its container registry, if enabled.

Pull image from DockerHub, run it, then store the image on the BioHPC GitLab.

54

▪Working on any BioHPC system (with SINGULARITY_DOCKER credentials) :

If a GitLab repository is public, so is its container registry, if enabled.

$ singularity pull local_centos8.sif docker://docker.io/centos:centos8
$ singularity run local_centos8.sif
$ singularity push --docker-login local_centos8.sif \
oras://git.biohpc.swmed.edu:5050/example_group/example_repository/centos_sif:centos8

“I want to use an image from this private GitLab repository/registry, using Singularity”

55

$ singularity pull local_base.sif \

docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

will fail with 403 (forbidden), because you haven’t logged in yet.

▪ Interactive :

$ singularity pull --docker-login local_base.sif \

docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

▪Programmatic :

$ singularity pull local_base.sif \
docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

$ singularity pull --docker-login local_base.sif \
docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

$ export SINGULARITY_DOCKER_USERNAME=“Test_Tok”
$ export SINGULARITY_DOCKER_PASSWORD=“zH_AQRxrnesN8UEgzNop”
$ singularity pull \
docker://git.biohpc.swmed.edu:5050/example_group/example_repository/centos:centos8

Further Resources

56

▪Singularity

–Quick Start: https://sylabs.io/guides/3.0/user-guide/quick_start.html

–Compatibility with Docker https://sylabs.io/guides/3.0/user-guide/singularity_and_docker.html

▪BioHPC

–Singularity on BioHPC: https://portal.biohpc.swmed.edu/content/guides/singularity-containers-biohpc/

– Training Slides: https://portal.biohpc.swmed.edu/content/training/training-slides/

▪GitLab Registry (Our current version of GitLab is 14.8)

–General usage: https://docs.gitlab.com/14.8/ee/user/packages/container_registry/index.html

▪ BioHPC Astrocyte

– Our workflow platform which allows you to build workflows, including using containers.

https://sylabs.io/guides/3.0/user-guide/quick_start.html
https://sylabs.io/guides/3.0/user-guide/singularity_and_docker.html
https://portal.biohpc.swmed.edu/content/guides/singularity-containers-biohpc/
https://portal.biohpc.swmed.edu/content/training/training-slides/
https://docs.gitlab.com/14.8/ee/user/packages/container_registry/index.html

	Default Section
	Slide 1
	Slide 2: BioHPC Reproducibility Series
	Slide 3
	Slide 4
	Slide 5: BioHPC Reproducibility Series – Part 1: Containers
	Slide 6: Terminology
	Slide 7: Main points about containers
	Slide 8: Why do I care about containers?
	Slide 9: Why do I care about containers?
	Slide 10: What actually is a container? Why use containers at all when virtual machines (VMs) exist?
	Slide 12: Singularity and Apptainer, Docker and Podman
	Slide 13: A basic filesystem
	Slide 14: When you log in to BioHPC, you are dropped into a shell in your home folder.
	Slide 15: A container image is basically a directory tree of its own (like a zip archive)
	Slide 16: Singularity creates a container from an image file…
	Slide 17: …borrows some critical folders from the host…
	Slide 18: …maps your external user info inside the container…
	Slide 19: … optionally does additional config (e.g. mounting more folders, setting env vars)…
	Slide 20: … links everything together inside the container …
	Slide 21: … and starts running a command inside the container.
	Slide 22: … and starts running a command inside the container.
	Slide 23: … and starts running a command inside the container.
	Slide 24: A Typical Container Lifecycle
	Slide 25: Overlay Filesystems
	Slide 26: What’s the difference between OCI (Docker/Podman) and Singularity images?

	Singularity/Apptainer
	Slide 27: Using Singularity/Apptainer
	Slide 28: What you need for what you’re doing
	Slide 29: singularity pull – Getting your first container!
	Slide 30: singularity pull – Getting your first container!
	Slide 31: singularity pull – Authenticating

	Running Containers
	Slide 32: Singularity runs containers as your user account
	Slide 33: Singularity run
	Slide 34: Singularity Exec
	Slide 35: Singularity shell

	Advanced Topics
	Slide 37: Other singularity commands of use
	Slide 38: Singularity push
	Slide 39: GitLab Registry – Quick Overview
	Slide 40: First, create a repository and enable the Container Registry
	Slide 41: Next, Access Credentials

	Access Tokens
	Slide 45: Access Tokens - Project
	Slide 46: Access Tokens - Personal

	Examples
	Slide 48: Examples
	Slide 49: Logging in to the GitLab Registry - Docker
	Slide 50: Push to/Pull from GitLab Registry
	Slide 51: Further Resources

	Examples
	Slide 52: “I want to make sure that I have access to this image” Using GitLab Container Registry as an archive for OCI images
	Slide 53: “I want to use an image from this public GitLab repository/registry, using Singularity”
	Slide 54: Pull image from DockerHub, run it, then store the image on the BioHPC GitLab.
	Slide 55: “I want to use an image from this private GitLab repository/registry, using Singularity”
	Slide 56: Further Resources

