
Image processing with Python

1 Updated for 2023-09-20

[web] 

[email]

portal.biohpc.swmed.edu

biohpc-help@utsouthwestern.edu

mailto:biohpc-help@utsouthwestern.edu


OnDemand 
Jupyter

Python image processing workflows

webGUI/ 
webGPU

Create conda env 
and install python 

libraries

1

2
Activate the 

conda env and 
run the 

workflow

2

https://portal.biohpc.swmed.edu/media/filer_public/18/86/18864d7a-28ca-4ae5-be84-3e94b7c3bc4b/software_installation_2023_09_13.pdf

https://portal.biohpc.swmed.edu/media/filer_public/18/86/18864d7a-28ca-4ae5-be84-3e94b7c3bc4b/software_installation_2023_09_13.pdf


Python Libraries + Modules used in this training

3

Already installed in Jupyter/JupyterLab OnDemand.

Docs:
•os : https://docs.python.org/3/library/os.html
•matplotlib : https://matplotlib.org/
•scipy :

•General : https://docs.scipy.org
•ndimage : https://docs.scipy.org/doc/scipy/reference/ndimage.html

•skimage : https://scikit-image.org/
•sklearn : https://scikit-learn.org/stable/
•numpy :

•General : https://numpy.org/doc/stable/index.html
•ndarrays : https://numpy.org/doc/stable/reference/arrays.ndarray.html#id1

https://docs.python.org/3/library/os.html
https://matplotlib.org/
https://docs.scipy.org/
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://scikit-image.org/
https://scikit-learn.org/stable/
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html#id1


How a digital image is stored on a computer

Source - http://cs231n.github.io/

4

http://cs231n.github.io/


Images as Arrays

5

Different Python libraries have different array implementations

• array
• numpy

• ndarray
• openCV

• cv::Mat

Common data types for image pixels:
• bool (binary)- [0,1]
• int8 (signed integer 8 bit) – numbers in the range: [-128 : 127]
• float (double-precision floating point) – Decimal numbers (e.g. 2.2251e-308, 0.4, 0.33...)
• uint8 (unsigned 8-bit) – [0,255]
• uint16 (unsigned 16-bit) – [0,65535]



Python Array Indexing

• Python starts counting indexes from 0, and arranges coordinates like C does 
(row-major)

• Array elements can be access in two ways:
• By forward indexing
• By backward indexing

my_array = numpy.array([127, 128, 129, 130, 131, 132], 

dtype=np.int8)

6

+ index 0 1 2 3 4 5

Element 127 128 129 130 131 132

- index -6 -5 -4 -3 -2 -1

Slice indexes are defined by [Start:Stop] or [Start:Stop:Step] (Stop not included)



Python Array Indexing

my_array = numpy.array([127, 128, 129, 130, 131, 132], dtype=np.int8)

+ index 0 1 2 3 4 5

Element 127 128 129 130 131 132

- index -6 -5 -4 -3 -2 -1

my_array[-5:5]

my_array[0:5] OR my_array[:5]

my_array[-1:-6]

7



Multi-dimensional arrays – numpy arrays

my_2D_array = numpy.array([[127, 128, 129],

[130, 131, 132]

[133, 134, 135])

my_2D_array[1][0:1] = [130, 131]

my_2D_array[-1][:] = [133, 134, 135]

First index

Python counts in ‘row-major’ ordering, and orders dimensions like 

C does.

- Multidimensional arrays are ‘lists of lists’

- This is in fact how elements are stored in memory

8

Second index



Multi-dimensional arrays – numpy arrays

First index

Python counts in ‘row-major’ ordering, and orders dimensions like 

C does.

- Multidimensional arrays are ‘lists of lists’

- This is in fact how elements are stored in memory

9

Second index



Intensity enhancement

• Contrast stretching

• Histogram equalization

• Adaptive equalization

https://en.wikipedia.org/wiki/Histogram_equalization

10

https://en.wikipedia.org/wiki/Histogram_equalization


Morphological operations: Structuring element

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

11

The structuring element is a small binary image or matrix such that:
• The matrix dimensions specify the size of the structuring element.
• The pattern of ones and zeros specifies the shape of the structuring 

element.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm


Mathematical Morphology - Grayscale

12

• Grayscale images can be treated similarly, but with a slightly modified 
interpretation of ‘hit or miss’

• Dilation will result in a pixel taking on the max value defined by the moving 
window of the strel.

• Erosion will result in a pixel taking on the min value defined by the moving 
window of the strel.



Morphological operations: Dilation and Erosion

Erosion:

Dilation:

13



Morphological operations: Open and Close

Opening: erosion followed by a dilation Closing: dilation followed by a erosion

14

• Opening an image smoothes its contour, fractures narrow isthmuses, making items more separated

• Closing fills in small gaps/holes and brings items closer, also smoothes the contour



Segmentation – Separating an image into parts

Most basic: Manual thresholding

• Bright or dark background with a dark or bright foreground, respectively.
• Choose a cutoff value, threshold.
• Using global thresholds may miss important elements

More complex:
• Adaptive thresholds
• Morphological segmentation
• Clustering
• Machine learning methods

15



Morphological Segmentation: Watershed method

• Consider grey levels as altitudes
• Identify local minima
• Flood basins starting from minima
• Separate the basins by a “dam” → 

the watershed

Steps for performing the watershed 
method:
1. Segment objects of interest
2. Convert the mask into an intensity profile 

using the distance transform
3. Run the watershed algorithm

16



More useful materials

• Previous image processing using Matlab slides (More intro on filters) 
https://portal.biohpc.swmed.edu/media/filer_public/61/34/6134df89-c5b8-4efd-9f60-
fbc1c5005bb0/training_matlab_2022_10_19.pdf

• Image Processing with Python https://datacarpentry.org/image-processing/

17

https://portal.biohpc.swmed.edu/media/filer_public/61/34/6134df89-c5b8-4efd-9f60-fbc1c5005bb0/training_matlab_2022_10_19.pdf
https://portal.biohpc.swmed.edu/media/filer_public/61/34/6134df89-c5b8-4efd-9f60-fbc1c5005bb0/training_matlab_2022_10_19.pdf
https://datacarpentry.org/image-processing/

	Slide 1
	Slide 2
	Slide 3: Already installed in Jupyter/JupyterLab OnDemand.
	Slide 4
	Slide 5: Different Python libraries have different array implementations
	Slide 6
	Slide 7: my_array = numpy.array([127, 128, 129, 130, 131, 132], dtype=np.int8)
	Slide 8: Python counts in ‘row-major’ ordering, and orders dimensions like C does. - Multidimensional arrays are ‘lists of lists’ - This is in fact how elements are stored in memory 
	Slide 9: Python counts in ‘row-major’ ordering, and orders dimensions like C does. - Multidimensional arrays are ‘lists of lists’ - This is in fact how elements are stored in memory 
	Slide 10
	Slide 11: The structuring element is a small binary image or matrix such that:
	Slide 12
	Slide 13
	Slide 14: Opening: erosion followed by a dilation
	Slide 15: Most basic: Manual thresholding
	Slide 16
	Slide 17

