UTSouthwestern Medical Center

Lyda Hill Department of Bioinformatics

Image processing with Python

[web] portal.biohpc.swmed.edu [email] biohpc-help@utsouthwestern.edu

Updated for 2023-09-20

BioHPC

Python image processing workflows

https://portal.biohpc.swmed.edu/media/filer_public/18/86/18864d7a-28ca-4ae5-be84-3e94b7c3bc4b/software_installation_2023_09_13.pdf

Python Libraries + Modules used in this training

Docs:

- os : <u>https://docs.python.org/3/library/os.html</u>
- matplotlib : <u>https://matplotlib.org/</u>
- scipy :
 - General : <u>https://docs.scipy.org</u>
 - ndimage : <u>https://docs.scipy.org/doc/scipy/reference/ndimage.html</u>
- skimage : <u>https://scikit-image.org/</u>
- sklearn : <u>https://scikit-learn.org/stable/</u>
- numpy :
 - General : <u>https://numpy.org/doc/stable/index.html</u>
 - ndarrays : <u>https://numpy.org/doc/stable/reference/arrays.ndarray.html#id1</u>

Already installed in Jupyter/JupyterLab OnDemand.

How a digital image is stored on a computer

Source - http://cs231n.github.io/

Images as Arrays

Different Python libraries have different array implementations

- array
- numpy
 - ndarray
- openCV
 - cv::Mat

Common data types for image pixels:

- **bool** (binary)- [0,1]
- int8 (signed integer 8 bit) numbers in the range: [-128 : 127]
- float (double-precision floating point) Decimal numbers (e.g. 2.2251e-308, 0.4, 0.33...)
- **uint8** (unsigned 8-bit) [0,255]
- **uint16** (unsigned 16-bit) [0,65535]

Python Array Indexing

- Python starts counting indexes from 0, and arranges coordinates like C does (row-major)
- Array elements can be access in two ways:
 - By forward indexing
 - By backward indexing

my_array = numpy.array([127, 128, 129, 130, 131, 132],
dtype=np.int8)

+ index	0	1	2	3	4	5
Element	127	128	129	130	131	132
- index	-6	-5	-4	-3	-2	-1

Slice indexes are defined by [Start:Stop] or [Start:Stop:Step] (Stop not included)

my_array = numpy.array([127, 128, 129, 130, 131, 132], dtype=np.int8)

	my_array[-5:5]							
	my_array[0:5] OR my_array[:5]							
+ index	0	1	2	3	4	5		
Element	127	128	129	130	131	132		
- index	-6	-5	-4	-3	-2	-1		

my_array[-1:-6]

Multi-dimensional arrays – numpy arrays

Python counts in 'row-major' ordering, and orders dimensions like C does.

- Multidimensional arrays are 'lists of lists'
- This is in fact how elements are stored in memory

```
Second index
my_2D_array = numpy.array([[127, 128, 129],
        [130, 131, 132]
        [133, 134, 135])
First index
```

```
my_2D_array[1][0:1] = [130, 131]
my_2D_array[-1][:] = [133, 134, 135]
```


Multi-dimensional arrays – numpy arrays

Python counts in 'row-major' ordering, and orders dimensions like C does.

- Multidimensional arrays are 'lists of lists'
- This is in fact how elements are stored in memory

Intensity enhancement

- Contrast stretching
- Histogram equalization
- Adaptive equalization

https://en.wikipedia.org/wiki/Histogram_equalization

Morphological operations: Structuring element

The structuring element is a small binary image or matrix such that:

- The matrix dimensions specify the size of the structuring element.
- The pattern of ones and zeros specifies the shape of the structuring element.

Probing of an image with a structuring element (white and grey pixels have zero and non-zero values, respectively).

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

Mathematical Morphology - Grayscale

- Grayscale images can be treated similarly, but with a slightly modified interpretation of 'hit or miss'
- Dilation will result in a pixel taking on the max value defined by the moving window of the strel.
- Erosion will result in a pixel taking on the min value defined by the moving window of the strel.

Morphological operations: Dilation and Erosion

Erosion:

Erosion: a 3×3 square structuring element (www.cs.princeton.edu/~pshilane/class/mosaic/).

Dilation: a 3×3 square structuring element (www.cs.princeton.edu/~pshilane/class/mosaic/).

Morphological operations: Open and Close

- Opening an image smoothes its contour, fractures narrow isthmuses, making items more separated
- Closing fills in small gaps/holes and brings items closer, also smoothes the contour

Segmentation – Separating an image into parts

Most basic: Manual thresholding

- Bright or dark background with a dark or bright foreground, respectively.
- Choose a cutoff value, threshold.
- Using global thresholds may miss important elements

More complex:

- Adaptive thresholds
- Morphological segmentation
- Clustering
- Machine learning methods

Morphological Segmentation: Watershed method

- Consider grey levels as altitudes
- Identify local minima
- Flood basins starting from minima
- Separate the basins by a "dam" → the watershed

Steps for performing the watershed method:

- 1. Segment objects of interest
- 2. Convert the mask into an intensity profile using the distance transform
- 3. Run the watershed algorithm

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

More useful materials

- Previous image processing using Matlab slides (More intro on filters) <u>https://portal.biohpc.swmed.edu/media/filer_public/61/34/6134df89-c5b8-4efd-9f60-fbc1c5005bb0/training_matlab_2022_10_19.pdf</u>
- Image Processing with Python https://datacarpentry.org/image-processing/

Grayscale Histograms

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

