
Software Installation on BioHPC

1

[web]
[email]

portal.biohpc.swmed.edu
biohpc-help@utsouthwestern.edu

Updated for 2023-09-13

Topics

To make the most of this tutorial,
you should already know how to:

Login with SSH to a linux machine
Navigate directories in linux
terminal
Edit a text file in terminal (e.g. nano, vi
etc)

Basic principles of (Linux) software
The $PATH variable
Scripted vs compiled programs

Python software
pip
virtual environments
Anaconda

R package installation
Troubleshooting

Generic software
Installation from source code

Basic principles of (Linux) software

The $PATH variable

In Linux (and other OS also) the $PATH is a global variable that contains a list of locations:

The CLI will consider these locations when interpreting a command name as a program.

Basic principles of (Linux) software

Modifying the $PATH variable

Let assume there is a program called hello located in a folder:

However, this program only
works while in that folder or
with an absolute path:

Adding the program location to the $PATH variable, makes the
command work everywhere:

Basic principles of (Linux) software

Permanently setting the $PATH variable
The command ‘export $PATH’ will be useful only for the current session. If you logout, or log-
in somewhere else, the $PATH will not contain the changes we made.

In order to make the $PATH change permanent, we need to edit the file ~/.bash_profile

Be careful! Only alter your $PATH once you are certain you need to.

Other "PATH-like" variables

LD_LIBRARY_PATH

o is the search path environment variable for the linux shared
library

PYTHONPATH
o is an environment variable which you can set to add additional

directories where python will look for modules and packages.
o The only reason to set PYTHONPATH is to maintain directories of

custom Python libraries that you do not want to install in the
global default location

Scripted programs

- The program is a script (a text file of
commands in order)

- The script is executed by an
interpreter (e.g. python), which runs
the program line by line as scripted

- You only need the script file and the
interpreter to run your program

BioHPC has many interpreters already
available.

- Slow execution
- Easy to debug errors

Compiled programs

- The script/code does not run directly
as it is but needs to be compiled and
built using an appropriate tool

- This will result in a program being
created from the original source

- Compiling a source code requires a
specific compiler:

- To match the language of the
source

- To match the architecture of the
target environment

- Fast execution
- Hard to debug errors

Scripted vs Compiled programs

Python Software

Python is a script interpreter. Python programs are scripted programs.

The term package or module is often used in python. A package or
module is a collection of script files necessary to make up a complex
program.

>>> import sys
>>> p r i n t ' \ n ' . j o i n (s y s . p a t h)
/usr / l ib64/python27.z ip
/usr / l ib64/python2.7
/us r / l ib64 /python2 .7 /p la t - l inux2
/ us r / l i b64 / py t hon2 .7 / l i b - t k
/us r / l i b64 /py thon2 .7 / l ib -o ld
/usr / l ib64/python2.7/ l ib -dyn load
/home2/s201048/. local/ l ib/python2.7/site-packages

Python Software

Installing a python package, means obtaining the package and placing it
in a specific location already known to the python interpreter.

Similar to the linux $PATH variable, python has its own path called
sys.path where it will look for packages.

>>> import sys
>>> p r i n t ' \ n ' . j o i n (s y s . p a t h)
/usr / l ib64/python27.z ip
/usr / l ib64/python2.7
/us r / l ib64 /python2 .7 /p la t - l inux2
/ us r / l i b64 / py t hon2 .7 / l i b - t k
/us r / l i b64 /py thon2 .7 / l ib -o ld
/usr / l ib64/python2.7/ l ib -dyn load
/home2/s201048/. local/ l ib/python2.7/site-packages

PIP is the foremost python package manager. Almost all published
python packages can be fetched with the command
pip install <package-name> Or pip install –r requirements.txt

Possible issues that may arise?

- Where is the package installed?
- What happens in the long run if you ‘install and forget’?
- What if you need several versions of the same package?

e.g. packageX==2.0 works with python2 and packageX==2.1 works
with python3

Fortunately, there are plenty of solutions to this conundrum.

Python Software - Pip

It is a way to encapsulate a certain python version + a collection of
certain packages. This allows you to create environments for each
project (or group of related projects) in order to ensure you will always
have the necessary packages and python version for that project.

Python Virtual Environment (venv)

Install virtualenv package

How to use venv

Create a virtual environment

Activate environment / Use / Deactivate

• Virtualenv is the most common and easy to install tool for virtual
environments. It’s a great tool for beginners.

• It has lots of documentation for many issues.

However; there are downfalls:
• Cross dependency management is still hard for larger (many

packages) projects
• Needs different versions of python interpreters
• where packages dependency conflict happens and not easy to

manually fix.

For these scenarios, solutions exist!

Pros and Cons

Similar to the python venv, anaconda is also able to encapsulate entire
systems of applications, but it can do something more.
• Support packages written by other languages, e.g. R, C/C++
• Can work with Jupyter notebook together by creating a kernel
• Easy to reproduce the environment

Python Software - Anaconda

c u r l -LO https:/ /repo.anaconda.com/miniconda/Miniconda3-latest-
Linux-x86_64.sh

bash Miniconda3-latest-Linux-x86_64.sh

Miniconda installation – Do not need to do this in Nucleus cluster

Python Software - Anaconda

We have already installed anaconda in Nucleus cluster

Conda install

Google key words “conda install package-name”

Common commands

Note: conda will install everything under your home directory by
default, unless you indicate the specific path using –p option

Search available packages

Search in terminal

Export your environment

You can share all the components in
any env by export it into a file using
conda env export –f my-env.yml

Your collaborator can reproduce this
environment by
conda env create –p <path/to/install>
-f my-env.yml

$ ssh yourusername@nucleus.biohpc.swmed.edu

$ module load python/3.7.x-anaconda

$ conda create --name foo python=3.7

$ conda activate foo

(foo) $ pip install ipykernel

(foo) $ pip install <additional modules as needed>

(foo) $ python -m ipykernel install --user --name foo --display-name "my foo env“

(foo) $ conda deactivate

Create a python kernel

1) create conda env
2) install packages
3) create jupyter kernel
4) exit conda env

Then you can create and use this foo kernel in BioHPC Ondemand Jupyter.
Click this Link to Jupyter Notebook training slides

Standard 20 hrs limit
We have R/3.3.2, 3.4.1,
3.5.1 with Seurat,
R/3.6.1, R/4.0.2

Rstudio Ondemand

21

, R/4.1.1, R/4.2.2

https://portal.biohpc.swmed.edu/intranet/terminal/ondemand_rstudio/
https://portal.biohpc.swmed.edu/intranet/terminal/ondemand_rstudio/

R packages installation

Where are your R packages installed?
• First time users will be asked to allow R to install packages

into your home directory

> .libPaths()
1 "/home2/<username>/R/x86_64-pc-linux-gnu-library/3.6" #your local directory
2 "/cm/shared/apps/R/gcc/3.6.1/lib64" #system packages
3 "/cm/shared/apps/R/gcc/3.6.1/lib64/R/library" #system packages

Depending on packages, commands can be

• install.packages(‘devtools’)
• install_github("danielwilhelm/cats")
• BiocManager::install("EnhancedVolcano")

Missing dependency

lib***.so.*: cannot open shared object file: No such file or directory
• Check the module list, often the dependency is installed as a

module, using:
module avail <package name>, e.g, geos, proj, hdf5, gdal
then module load <package name> and redo installation

o In rare cases, you will also need to add some options in the command

remotes::install_github("r-spatial/sf", configure.args="--with-proj-

include=/cm/shared/apps/proj/gcc/6.0.0/include --with-proj-

lib=/cm/shared/apps/proj/gcc/6.0.0/lib/ --with-proj-api=yes")

• This works for R version <= 4.1.1

• We start to manage R v4.2 on BioHPC in a different way

• It was built inside a container, which makes it easier to

install missing libraries without affecting the whole system

• However, this requires root privilege, so feel free to let us

know if you have difficulty installing any R packages in

Ondemand Rstudio – R v4.2.2

• We noticed R v4.3.1 was released a few month ago and we

are working on it

Missing dependency

Installation from source code:

• You need to obtain the source code of the application
• Generally, through a git url
• Sometimes as a compressed archive (in this case, you need to un-compress it)

• Expect high quality software to have its own documentation regarding installation.
• Often the code contains a Makefile

• specifies the steps and architecture, you only need to ‘make’ the makefile

Your take home message for BioHPC systems:
Generally, you will get a permission error. This doesn’t mean that you don’t have
permission to install software, just that the generic installation steps might try to
write to a path that you don’t own.
Explore the documentation for custom installations, in order to place the install in a
folder where you have access to

Generally, the keywords for this are prefix or install-dir.

Generic software

Steps to install a generic software

19

• Ref to https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

#Basic Example

./configure

make

make install

#More realistic example

./configure --prefix=/path/to/install

make –j <number>

make install

Installation from source code:

https://github.com/cowsay-org/cowsay

Generic software

[s201048@Nucleus006 software]$ git clone https://github.com/cowsay-
org/cowsay.git Cloning into 'cowsay'...
[s201048@Nucleus006 software]$ cd
cowsay/ [s201048@Nucleus006 cowsay]$
make install
prefix=/work/biohpcadmin/s201048/software/my-cowsay-installation

[s201048@Nucleus006 cowsay]$ cd ../my-cowsay-installation/

[s201048@Nucleus006 my-cowsay-installation]$./bin/cowsay

hello

Add to $PATH if necessary

Demo

mkdir /path/to/my/new/virtual/env
cd /path/to/my/new/virtual/env
python -m venv venv
source venv/bin/activate
pip install tensorflow-gpu==1.14.0
pip install keras==2.2.4

conda create -n student -y
conda activate student
conda install -c anaconda tensorflow-gpu=1.14.0 -y
conda install -c anaconda keras==2.2.4 -y

srun -p GPUA100 --pty /bin/bash
module load python/3.7.x-anaconda
module load cuda112/toolkit/11.2.0
module add cudnn/8.1.1.33

Virtual environment Anaconda environment

Setup the node and modules

python
>>> import tensorflow as tf
>>> print(tf. version)
1.14.0
>>> import keras
Using TensorFlow backend.

Evaluate the environment

Proxy setup on compute nodes

Solution to “Can not connect ...” “Connection failed”

• cat $USER/.condarc
• proxy_servers:

http: http://proxy.swmed.edu:3128
https: http://proxy.swmed.edu:3128

Anaconda

• Sys.setenv(https_proxy =
'http://proxy.swmed.edu:3128')R

• cat ~/.bashrc
• export http_proxy=http://proxy.swmed.edu:3128

export https_proxy=http://proxy.swmed.edu:3128

Linux
terminal

• Sys.setenv(http_proxy =
'http://proxy.swmed.edu:3128')

Thank you

Regarding BioHPC policy:

You are responsible for the software you install
• consider quality and trustworthiness of the software you chose
• You may only install packages to your accessible locations

Cluster-wide installation is possible. Please submit your request to
BioHPC Helpdesk (biohpc-help@utsouthwestern.edu)

Questions / Comments / Remarks ?

