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Machine Learning on Images
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Given examples, can we train a computer to do: 

Source - http://cs231n.github.io/

We want the DL model to LEARN features! We want to TRAIN the DL model!



Machine Learning on Images
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Source - http://cs231n.github.io/



Artificial Neural Networks
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• What are neurons?
• How are they connected? 

Neural Networks



Artificial Neural Networks
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• Signal goes in, via input layer

• Weighted links transfer input values to 
neurons in hidden layers

• Signals are summed at hidden neurons and 
passed through transfer/activation function

• Processed signal arrives at output layer

• Decisions made using output signal(s)



What’s in an (Artificial) Neuron?
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Sources - http://cs231n.github.io/
https://www.v7labs.com/blog/neural-networks-activation-functions

Closer look at a neuron and a single layer

http://cs231n.github.io/
https://www.v7labs.com/blog/neural-networks-activation-functions


What do we expect from the hidden layers?
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https://www.3blue1brown.com/lessons/neural-networks



What we expect from Deep Learning?
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More layers can encapsulate more knowledge.
More weights to train – need more data, need more computation 



Where’s the Knowledge?
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How the Neural Network learns?
• Weights encapsulate the knowledge of a network
• Network learns using an algorithm that optimize weights given training data.
• Minimize cost function

• Cost function: summation over the differences between the NN prediction and 
the actual value of a class



Minimizing the cost function by using gradient descent algorithm
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https://www.3blue1brown.com/lessons/neural-networks



Backpropagation
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https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Q: X and Y are fed to the network and Z is the model 

predication – How good is this prediction or Z? How much 

error is associated with X and Y?

A: Calculate the derivative of the loss function with respect 

to X and Y (dL/dx and dL/dy) – Then subtract X and Y 

by dL/dx and dL/dy

https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199


Overview of the training process
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Training process review:

1. Forward pass input data through the network

2. Get the output from the network

3. Measure the error/loss between the network output 

and the true labels of data

4. Perform the backpropagation

5. Update network weights with the gradients



GPUs to the Rescue!
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GPU cards are exceptionally well suited to Neural Network Mathematics

Orders of magnitude faster than CPU-based training
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https://keras.io

• High-level, open-source Python API

• “Being able to go from idea to result with the least possible delay is key to 
doing good research”

• Interface for TensorFlow, Microsoft Cognitive Toolkit, and Theano

https://keras.io/


Installing a Conda Environment for Keras and TensorFlow with Jupyter Support
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$ module load python/3.6.4-anaconda

$ conda create --name py3.6-keras python=3.6 ipykernel keras
tensorflow-gpu pillow matplotlib

$ ipython kernel install --user --name py3.6-tfgpu --display-
name=“Keras (GPU)"



Basic concepts in distributed and parallel training Deep Learning: Performance metrics
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• Speedup
• Throughput
• Scalability

How to speedup the training process?



Basic concepts in distributed and parallel training Deep Learning: Types of parallelism
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Basic concepts in distributed and parallel training Deep Learning: Batch size
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The scale of data parallelism corresponds to the batch size.
(for the most common NNs)

batched

batch 1: GPU 1 batch 2: GPU 2

batch 3: GPU 3 batch 4: GPU 4

Divide dataset into batches -> stochastic gradient 

descent -> takes longer to converge

Example: python my_dl_model.py --model resnet50 --batch-size 128 



Basic concepts in distributed and parallel training Deep Learning: Relationship between batch 

size and training time
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But what are the limits of the data parallelism approach, and when 
should we expect to see large speedups?

Read more: https://ai.googleblog.com/2019/03/measuring-limits-of-data-parallel.html

“while simple data parallelism can provide large speedups for 

some workloads at the limits of today's hardware (e.g. Cloud 

TPU Pods), and perhaps beyond, some workloads require 

moving beyond simple data parallelism in order to benefit from 

the largest scale hardware that exists today…”

Maximum useful batch size depends on:

• Model architecture

• The dataset

• The optimizer

https://ai.googleblog.com/2019/03/measuring-limits-of-data-parallel.html


Distributed Deep Learning through Horovod
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• Distributed DL training framework for:
• Tensorflow/Keras
• Pytorch
• MXNet

• Open-source
• Separates infrastructure from DL/ML
• Installation: pip install horovod (not recommend) 

• Use existing Docker image and convert to Singularity
• Uses bandwidth-optimal communication protocols (e.g. 

Infiniband) if available
• Some terminology: Horovod master and worker nodes

• Master sends the variables to the worker during the 
initialization

• Worker nodes do the training job!

Example: python my_dl_model_horovod.py --model resnet50 --batch-size 128 



Distributed Deep Learning through Horovod (cont.)
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https://arxiv.org/pdf/1802.05799.pdf

Horovod Algorithm: Ring All-reduce

https://arxiv.org/pdf/1802.05799.pdf


Distributed Deep Learning through Horovod (contd.)
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Computing Platform

TF/Pytorch MPI NCCL

Horovod Stack

Horovod Driver (horovodrun or mpirun)

NCCL: Used for GPU-2-GPU communications
MPI: Used for CPU-2CPU comminications



Distributed Deep Learning through Horovod (cont.)
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https://horovod.ai/getting-started/

Simplified example of showing how to use Horovod with Tensorflow:

1. Initialize Horovod: 

import horovod.tensorflow as hvd

hvd.init()

2. Pin GPU to be used to process local rank (one GPU per process): 

config = tf.ConfigProto()

config.gpu_options.visible_device_list = str(hvd.local_rank())

3. Add Horovod Distributed Optimizer and scale the learning rate: 

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

opt = hvd.DistributedOptimizer(opt)

https://horovod.ai/getting-started/


Distributed Deep Learning through Horovod (cont.)
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4. Broadcast variables from rank 0 to all other processes during 

initialization.

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

5. Save checkpoints only on worker 0 to prevent other workers 

from corrupting them.

checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None

Read more: https://towardsdatascience.com/distributed-deep-learning-with-horovod-2d1eea004cb2

https://towardsdatascience.com/distributed-deep-learning-with-horovod-2d1eea004cb2


Horovod On BioHPC
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1. Either install it via pip OR pull the Docker image of Horovod and convert to Singularity as 
following:

module load singularity/3.0.2

singularity pull docker://horovod/horovod:latest horovod_latest.sif

2. Get inside the Singularity container and check the mpi version:
singularity run horovod_latest.sif

mpirun –-version

3. Based on the MPI version in the container, install the same version of openmpi in your 
account (instruction uploaded BioHPC Portal -> Training -> Training Slides & Hands out )

4. Submit the job to the cluster – Demo 
(code is uploaded BioHPC Portal -> Training -> Training Slides & Hands out)

Try on GPUA100 or GPUV100s


